Partial Tree

Time Limit: 20 Sec

Memory Limit: 256 MB

题目连接

http://codeforces.com/contest/598/problem/C

Description

You are given the set of vectors on the plane, each of them starting at the origin. Your task is to find a pair of vectors with the minimal non-oriented angle between them.

Non-oriented angle is non-negative value, minimal between clockwise and counterclockwise direction angles. Non-oriented angle is always between 0 and π. For example, opposite directions vectors have angle equals to π.

Input

First line of the input contains a single integer n (2 ≤ n ≤ 100 000) — the number of vectors.

The i-th of the following n lines contains two integers xi and yi (|x|, |y| ≤ 10 000, x2 + y2 > 0) — the coordinates of the i-th vector. Vectors are numbered from 1 to n in order of appearing in the input. It is guaranteed that no two vectors in the input share the same direction (but they still can have opposite directions).

Output

Print two integer numbers a and b (a ≠ b) — a pair of indices of vectors with the minimal non-oriented angle. You can print the numbers in any order. If there are many possible answers, print any.

Sample Input

4
-1 0
0 -1
1 0
1 1

Sample Output

3 4

HINT

题意

给你n个向量,然后问你角度差最小的两个向量是哪两个

题解:

nlogn极角排序之后,再扫一遍就好了

但是这道题会挂精度,所以直接把所有的double改成long double就过了。。

代码

#include<iostream>
#include<stdio.h>
#include<math.h>
#include<vector>
#include<algorithm>
using namespace std; vector<pair<long double,int> > K;
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<n;i++)
{
long double x,y;cin>>x>>y;
pair<long double,int> KK;
KK.first = atan2(y,x),KK.second = i+;
K.push_back(KK);
}
sort(K.begin(),K.end());
long double ans1 = *acos(-1.0);
int ans2 = ,ans3 = ;
for(int i=;i<n;i++)
{
long double t = (K[(i+)%n].first-K[i].first);
if(t<)t+=acos(-1.0)*;
if(t<ans1)
{
ans1 = t;
ans2 = K[i].second;
ans3 = K[(i+)%n].second;
}
}
printf("%d %d\n",ans2,ans3);
}

Educational Codeforces Round 1 C. Nearest vectors 极角排序的更多相关文章

  1. Educational Codeforces Round 1(C. Nearest vectors)

    题目链接:http://codeforces.com/problemset/problem/598/C 题意是给你一个数n,下面n行,每行给你横坐标x和纵坐标y(x != 0 && y ...

  2. Educational Codeforces Round 35 A. Nearest Minimums【预处理】

    [题目链接]: Educational Codeforces Round 35 (Rated for Div. 2) A. Nearest Minimums time limit per test 2 ...

  3. codeforces 598C C. Nearest vectors(极角排序)

    题目链接: C. Nearest vectors time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  4. Educational Codeforces Round 25 E. Minimal Labels 拓扑排序+逆向建图

    E. Minimal Labels time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  5. [Educational Codeforces Round 16]E. Generate a String

    [Educational Codeforces Round 16]E. Generate a String 试题描述 zscoder wants to generate an input file f ...

  6. [Educational Codeforces Round 16]D. Two Arithmetic Progressions

    [Educational Codeforces Round 16]D. Two Arithmetic Progressions 试题描述 You are given two arithmetic pr ...

  7. [Educational Codeforces Round 16]C. Magic Odd Square

    [Educational Codeforces Round 16]C. Magic Odd Square 试题描述 Find an n × n matrix with different number ...

  8. [Educational Codeforces Round 16]B. Optimal Point on a Line

    [Educational Codeforces Round 16]B. Optimal Point on a Line 试题描述 You are given n points on a line wi ...

  9. [Educational Codeforces Round 16]A. King Moves

    [Educational Codeforces Round 16]A. King Moves 试题描述 The only king stands on the standard chess board ...

随机推荐

  1. 【转】Select模型原理

    Select模型原理利用select函数,判断套接字上是否存在数据,或者能否向一个套接字写入数据.目的是防止应用程序在套接字处于锁定模式时,调用recv(或send)从没有数据的套接字上接收数据,被迫 ...

  2. [Papers]NSE, $u_3$, Lebesgue space [NNP, QM, 2002; Zhou, JMPA, 2005]

    $$\bex u_3\in L^p(0,T;L^q(\bbR^3)),\quad \frac{2}{p}+\frac{3}{q}=\frac{1}{2},\quad 6< q\leq \inft ...

  3. 【Opencv 小工具】鼠标选区信息获取

    有时候在目标跟踪的算法初始化工作时候,需要选区一个Rect区域,来表示要跟着的目标,所以有次小工具. 使用QT和opencv 编写 项目地址 https://github.com/wzyuliyang ...

  4. Python对象体系揭秘

    Guido用C语言创造了Python,在Python的世界中一切皆为对象. 一.C视角中的Python对象 让我们一起追溯到源头,Python由C语言实现,且向外提供了C的API http://doc ...

  5. 【跟我一起学Python吧】python with statement 进阶理解

    由于之前有一个项目老是要打开文件,然后用pickle.load(file),再处理...最后要关闭文件,所以觉得有点繁琐,代码也不简洁.所以向python with statement寻求解决方法.以 ...

  6. DOM笔记(四):HTML 5 DOM复杂数据类型

    HTML 5 DOM定义了一下集合.列表等复杂的数据类型用于实现便捷的操作.相对于HTML 4 DOM,HTML 5 DOM增加了HTMLCollection.DOMTokenList.DOMStri ...

  7. PHP的MySQL扩展:PHP访问MySQL的常用扩展函数

    来源:http://www.ido321.com/1024.html 一.PHP连接数据库及基本操作 MySQL采用的是’客户机/服务器’架构.使用PHP安装的MySQL扩展函数,和直接使用客户端软件 ...

  8. 线性模型(3):Logistic Regression

    此笔记源于台湾大学林轩田老师<机器学习基石><机器学习技法> (一)Logistic Regression 原理 对于分类问题,假设我们想得到的结果不是(x属于某一类)这种形式 ...

  9. BestCoder Round #76 解题报告

    DZY Loves Partition [思路] 贪心 [代码] #include <iostream> using namespace std; typedef long long ll ...

  10. Java IO流中的File类学习总结

    一.File类概述 File类位于java.io包中,是对文件系统中文件以及文件夹进行封装的对象,可以通过对象的思想来操作文件和文件夹. File类有多种重载的构造方法.File类保存文件或目录的各种 ...