题意

一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法。

思路

设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A1∧A2∧A3∧A4|
由容斥原理可知|∪Ai| = Σ|Ai| - Σ|Ai∧Aj| + …… (+-)|Ai∧Aj∧……∧Ak|.
再由德摩根定律得:∧Ai = Cu(∪Cu(Ai)),所以|∧Ai| = S - |∪Cu(Ai)|.(Cu表示集合的非)
然后令A表示不放第一行,B表示不放最后一行,C表示不放第一列,D表示不放最后一列。
ANS = ALL-A-B-C-D+AB+AC+AD+BC+BD-ABC-ABD-BCD+ABCD

代码

#include
#include
#include
#include
#include
#include
#define MID(x,y) ((x+y)/2)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;

const int MAXNUM = 505;
int C[MAXNUM][MAXNUM];
void cal_C(int n, int mod){
mem(C, 0);
C[0][0] = 1;
for (int i = 1; i

UVA 11806 Cheerleaders (容斥原理)的更多相关文章

  1. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  2. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  3. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  4. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  5. UVA 11806 Cheerleaders (容斥原理

    1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...

  6. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  7. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

随机推荐

  1. 无root权限安装python

    http://lujialong.com/?p=150 pipe 安装第三方包 http://www.lfd.uci.edu/~gohlke/pythonlibs/#pip http://www.cn ...

  2. BZOJ3550: [ONTAK2010]Vacation

    3550: [ONTAK2010]Vacation Time Limit: 10 Sec  Memory Limit: 96 MBSubmit: 91  Solved: 71[Submit][Stat ...

  3. 20160730noip模拟赛zld

    codeforces394E 如果没有在凸多边形内一点的限制,答案肯定是 如果不在凸多边形内,那么目标点肯定在凸多边形边上,我们枚举每条边,在每条边上求出距离平方和最小的点,在这些点中求出最小的 我们 ...

  4. [转载]JS中如何定义全局变量

    三种方法 1.在js的function外定义一个变量 var name='测试'; function XX(){        alert(name); } 2.不使用var,直接给定义变量,隐式的声 ...

  5. DX SetFVF

    自由顶点格式(flexible vertex format,FVF) http://www.cnblogs.com/xmzyl/articles/1604096.html if( SUCCEEDED( ...

  6. curPos和tgtPos

    curpos tgtpos 乍一看以为是当前位置和目标位置,但在项目里面这两个位置有点坑 当客户端玩家移动或者AI里面的位置,会把获得的位置付给tgtpos 而以前的tgtpos会付给curpos 所 ...

  7. Struct2 自定义拦截器

    1 因为struct2 如文件上传,数据验证等功能都是由系统默认的 defalutStack中的拦截器实现的,所以我们定义拦截器需要引用系统默认的defalutStack 这样才不会影响struct2 ...

  8. 谁会是 Zabbix 和 Nagios 的继任者?

    [编者按]本文根据 Dataloop.IO 的创始人兼 CEO David Gildeh 对监控工具市场的现状分析以及对未来发展趋势的展望,展开拓展讨论. 为什么监控还是一塌糊涂? 为了调研市场,从而 ...

  9. Appboy 基于 MongoDB 的数据密集型实践

    摘要:Appboy 正在过手机等新兴渠道尝试一种新的方法,让机构可以与顾客建立更好的关系,可以说是市场自动化产业的一个前沿探索者.在移动端探索上,该公司已经取得了一定的成功,知名产品有 iHeartM ...

  10. C++中的const关键字

    http://blog.csdn.net/eric_jo/article/details/4138548 C++中的const关键字的用法非常灵活,而使用const将大大改善程序的健壮性,本人根据各方 ...