http://acm.hdu.edu.cn/showproblem.php?pid=4035

树上的概率dp。

 

Maze

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 1626    Accepted Submission(s): 608 Special Judge

Problem Description
When wake up, lxhgww find himself in a huge maze.
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze.
Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room). What is the expect number of tunnels he go through before he find the exit?
 
Input
First line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case.
Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y.
Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room.
 
Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
 
Sample Input
3
3
1 2
1 3
0 0
100 0
0 100
3
1 2
2 3
0 0
100 0
0 100
6
1 2
2 3
1 4
4 5
4 6
0 0
20 30
40 30
50 50
70 10
20 60
 
Sample Output
Case 1: 2.000000
Case 2: impossible
Case 3: 2.895522
 

http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html

牛人的博客思路

dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int len,head[];
double A,B,C;
double k[],e[];
struct node
{
int now,next;
}tree[];
void add(int x,int y)
{
tree[len].now=y;
tree[len].next=head[x];
head[x]=len++;
}
void dfs(int root,int p)
{
int i,son,m=;
double a=,b=,c=,q;
for(i=head[root];i!=-;i=tree[i].next)
{
son=tree[i].now;
if(son==p)
{
continue;
}
dfs(son,root);
a+=A;
b+=B;
c+=C;
m++; } if(p != -)++m;
q=(-k[root]-e[root])/m;
A=(k[root]+q*a)/(-q*b);
B=q/(-q*b);
C=(-k[root]-e[root]+q*c)/(-q*b);
}
int main()
{
int t,n,a,b,j,i;
int x,y;
scanf("%d",&t);
for(j=;j<=t;j++)
{ len=;
memset(head,-,sizeof(head));
memset(e,,sizeof(e));
memset(k,,sizeof(k));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
// printf("x=%d,y=%d\n",x,y);
k[i]=x/100.0;
e[i]=y/100.0;
// printf("k[i]=%lf,e[i]=%lf\n",k[i],e[i]);
}
dfs(,-);
if(-A<1e-)
printf("Case %d: impossible\n",j);
else
printf("Case %d: %lf\n",j,C/(-A));
}
return ;
}

HDU-4035 Maze的更多相关文章

  1. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  2. HDU 4035 Maze 概率dp,树形dp 难度:2

    http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...

  3. hdu 4035 Maze 概率DP

        题意:    有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,    从结点1出发,开始走,在每个结点i都有3种可能:        1.被杀死,回到结点1处(概率为ki)      ...

  4. HDU 4035 Maze(树形概率DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035 题意:一棵树,从结点1出发,在每个结点 i 都有3种可能:(1)回到结点1 , 概率 Ki:(2 ...

  5. hdu 4035 Maze(期待更多经典的树DP)

    Maze Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others) Total Submi ...

  6. HDU.4035.Maze(期望DP)

    题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...

  7. HDU 4035 Maze 概率DP 搜索

    解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...

  8. HDU 4035:Maze(概率DP)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description   When w ...

  9. hdu 4035 2011成都赛区网络赛E 概率dp ****

    太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...

  10. hdu 5094 Maze 状态压缩dp+广搜

    作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...

随机推荐

  1. lintcode :最长单词

    题目: 最长单词 给一个词典,找出其中所有最长的单词. 样例 在词典 { "dog", "google", "facebook", &quo ...

  2. Android:Android SDK Manager顺利下载

    默认的Android SDK只有Android 4.4的版本,如果需要其他版本的模拟器,需要Android SDK Manager下载, 1.打开Eclipse 2.选择Android SDK Man ...

  3. PowerDesigner概念模型的Notation设置

    原文:PowerDesigner概念模型的Notation设置 在进行数据库设计模型时,分为概念模型设计和物理模型设计两种,概念模型主要是反映真是 世界中的业务关系,也就是我们常用的实体关系图.物理模 ...

  4. 项目中使用Quartz集群分享--转载

    项目中使用Quartz集群分享--转载 在公司分享了Quartz,发布出来,希望大家讨论补充. CRM使用Quartz集群分享  一:CRM对定时任务的依赖与问题  二:什么是quartz,如何使用, ...

  5. [Linux 命令]df -h

    查看目前磁盘空间和使用情况 以更易读的方式显示

  6. JDBC学习总结(五)

    取得数据库连接是件耗时间及资源的动作,尽量利用已打开的连接,也就是重复利用取得的Connection实例,是改善数据库连接性能的一个方式,而采用连接池是基本做法.由于取得Connection的方式根据 ...

  7. Linux /bin、/sbin、/usr/bin、/usr/sbin目录的区别

    在linux下我们经常用到的四个应用程序的目录是/bin./sbin./usr/bin./usr/sbin .而四者存放的文件一般如下:     bin目录:  bin为binary的简写主要放置一些 ...

  8. AFNetworking使用

    1.访问网络获取Json //Get方法 NSString *str = @"http://api.xxx.cc/product/found.jhtml"; NSDictionar ...

  9. 学习Hadoop的资料

    1)Cygwin相关资料 (1)Cygwin上安装.启动ssh服务失败.ssh localhost失败的解决方案 地址:http://blog.163.com/pwcrab/blog/static/1 ...

  10. 1709. Penguin-Avia(并查集)

    1709 简单题 并查集找下就行 #include <iostream> #include<cstdio> #include<cstring> #include&l ...