HDU-4035 Maze
http://acm.hdu.edu.cn/showproblem.php?pid=4035
树上的概率dp。
MazeTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 1626 Accepted Submission(s): 608 Special Judge Problem Description
When wake up, lxhgww find himself in a huge maze.
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze. Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room). What is the expect number of tunnels he go through before he find the exit? Input
First line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case. Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y. Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room. Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
3
3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60 Sample Output
Case 1: 2.000000
Case 2: impossible Case 3: 2.895522 |
http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html
牛人的博客思路
dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int len,head[];
double A,B,C;
double k[],e[];
struct node
{
int now,next;
}tree[];
void add(int x,int y)
{
tree[len].now=y;
tree[len].next=head[x];
head[x]=len++;
}
void dfs(int root,int p)
{
int i,son,m=;
double a=,b=,c=,q;
for(i=head[root];i!=-;i=tree[i].next)
{
son=tree[i].now;
if(son==p)
{
continue;
}
dfs(son,root);
a+=A;
b+=B;
c+=C;
m++; } if(p != -)++m;
q=(-k[root]-e[root])/m;
A=(k[root]+q*a)/(-q*b);
B=q/(-q*b);
C=(-k[root]-e[root]+q*c)/(-q*b);
}
int main()
{
int t,n,a,b,j,i;
int x,y;
scanf("%d",&t);
for(j=;j<=t;j++)
{ len=;
memset(head,-,sizeof(head));
memset(e,,sizeof(e));
memset(k,,sizeof(k));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
// printf("x=%d,y=%d\n",x,y);
k[i]=x/100.0;
e[i]=y/100.0;
// printf("k[i]=%lf,e[i]=%lf\n",k[i],e[i]);
}
dfs(,-);
if(-A<1e-)
printf("Case %d: impossible\n",j);
else
printf("Case %d: %lf\n",j,C/(-A));
}
return ;
}
HDU-4035 Maze的更多相关文章
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- hdu 4035 Maze 概率DP
题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) ...
- HDU 4035 Maze(树形概率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035 题意:一棵树,从结点1出发,在每个结点 i 都有3种可能:(1)回到结点1 , 概率 Ki:(2 ...
- hdu 4035 Maze(期待更多经典的树DP)
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submi ...
- HDU.4035.Maze(期望DP)
题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...
- HDU 4035 Maze 概率DP 搜索
解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...
- HDU 4035:Maze(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description When w ...
- hdu 4035 2011成都赛区网络赛E 概率dp ****
太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...
- hdu 5094 Maze 状态压缩dp+广搜
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...
随机推荐
- cast——java类型转换
以下例说之: byte b = 3; //??? 3是一个int常量,但是会自动判断3是不是在byte类型的范围内 b = b + 2; //Type mismatch: cannot convert ...
- C Primer Plus之C预处理器和C库
编译程序前,先由预处理器检查程序(因此称为预处理器).根据程序中使用的预处理器指令,预处理器用符号缩略语所代表的内容替换程序中的缩略语. 预处理器不能理解C,它一般是接受一些文件并将其转换成其他文本. ...
- Centos安装桌面环境
刚开始装系统的时候,没有选Gnome或者KDE,现在想装个玩玩. 简单的安装可以参考这个:http://huruxing159.iteye.com/blog/744750 centos安装是是使用li ...
- *[hackerrank]Die Hard 3
https://www.hackerrank.com/contests/w7/challenges/die-hard-3 首先,发现c <= max(a, b) 而且 c = aX + bY时有 ...
- java登陆验证码与JS无刷新验证
最近公司的项目的登陆模块由我负责,所以就做了个登陆小功能进行练手,其包括了用jQuery对用户名和密码进行不为null验证,和出于安全性考虑加了一个验证码的校验 别的不说先上代码 controller ...
- 从一点儿不会开始——Unity3D游戏开发学习(一)
一些废话 我是一个windows phone.windows 8的忠实粉丝,也是一个开发者,开发数个windows phone应用和两个windows 8应用.对开发游戏一直抱有强烈兴趣和愿望,但奈何 ...
- PCL—低层次视觉—点云分割(邻近信息)
分割给人最直观的影响大概就是邻居和我不一样.比如某条界线这边是中华文明,界线那边是西方文,最简单的分割方式就是在边界上找些居民问:"小伙子,你到底能不能上油管啊?”.然后把能上油管的居民坐标 ...
- 常用的coco2d-x游戏开发工具(转)
物理编辑工具Physics Editing ToolsMekanimo 网址:http://www.mekanimo.net/PhysicsBench 网址:http://www.cocos2d-ip ...
- Ibatis,Spring整合(注解方式注入)
applicationContext.xml <?xml version="1.0" encoding="UTF-8"?> <beans xm ...
- Oracle 数据集成的实际解决方案
就针对市场与企业的发展的需求,Oracle公司提供了一个相对统一的关于企业级的实时数据解决方案,即Oracle数据集成的解决方案.以下的文章主要是对其解决方案的具体描述,望你会有所收获. Oracle ...