HDU-4035 Maze
http://acm.hdu.edu.cn/showproblem.php?pid=4035
树上的概率dp。
MazeTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submission(s): 1626 Accepted Submission(s): 608 Special Judge Problem Description
When wake up, lxhgww find himself in a huge maze.
The maze consisted by N rooms and tunnels connecting these rooms. Each pair of rooms is connected by one and only one path. Initially, lxhgww is in room 1. Each room has a dangerous trap. When lxhgww step into a room, he has a possibility to be killed and restart from room 1. Every room also has a hidden exit. Each time lxhgww comes to a room, he has chance to find the exit and escape from this maze. Unfortunately, lxhgww has no idea about the structure of the whole maze. Therefore, he just chooses a tunnel randomly each time. When he is in a room, he has the same possibility to choose any tunnel connecting that room (including the tunnel he used to come to that room). What is the expect number of tunnels he go through before he find the exit? Input
First line is an integer T (T ≤ 30), the number of test cases.
At the beginning of each case is an integer N (2 ≤ N ≤ 10000), indicates the number of rooms in this case. Then N-1 pairs of integers X, Y (1 ≤ X, Y ≤ N, X ≠ Y) are given, indicate there is a tunnel between room X and room Y. Finally, N pairs of integers Ki and Ei (0 ≤ Ki, Ei ≤ 100, Ki + Ei ≤ 100, K1 = E1 = 0) are given, indicate the percent of the possibility of been killed and exit in the ith room. Output
For each test case, output one line “Case k: ”. k is the case id, then the expect number of tunnels lxhgww go through before he exit. The answer with relative error less than 0.0001 will get accepted. If it is not possible to escape from the maze, output “impossible”.
Sample Input
3
3 1 2 1 3 0 0 100 0 0 100 3 1 2 2 3 0 0 100 0 0 100 6 1 2 2 3 1 4 4 5 4 6 0 0 20 30 40 30 50 50 70 10 20 60 Sample Output
Case 1: 2.000000
Case 2: impossible Case 3: 2.895522 |
http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html
牛人的博客思路
dp求期望的题。
题意:
有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树,
从结点1出发,开始走,在每个结点i都有3种可能:
1.被杀死,回到结点1处(概率为ki)
2.找到出口,走出迷宫 (概率为ei)
3.和该点相连有m条边,随机走一条
求:走出迷宫所要走的边数的期望值。 设 E[i]表示在结点i处,要走出迷宫所要走的边数的期望。E[1]即为所求。 叶子结点:
E[i] = ki*E[1] + ei*0 + (1-ki-ei)*(E[father[i]] + 1);
= ki*E[1] + (1-ki-ei)*E[father[i]] + (1-ki-ei); 非叶子结点:(m为与结点相连的边数)
E[i] = ki*E[1] + ei*0 + (1-ki-ei)/m*( E[father[i]]+1 + ∑( E[child[i]]+1 ) );
= ki*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei)/m*∑(E[child[i]]) + (1-ki-ei); 设对每个结点:E[i] = Ai*E[1] + Bi*E[father[i]] + Ci; 对于非叶子结点i,设j为i的孩子结点,则
∑(E[child[i]]) = ∑E[j]
= ∑(Aj*E[1] + Bj*E[father[j]] + Cj)
= ∑(Aj*E[1] + Bj*E[i] + Cj)
带入上面的式子得
(1 - (1-ki-ei)/m*∑Bj)*E[i] = (ki+(1-ki-ei)/m*∑Aj)*E[1] + (1-ki-ei)/m*E[father[i]] + (1-ki-ei) + (1-ki-ei)/m*∑Cj;
由此可得
Ai = (ki+(1-ki-ei)/m*∑Aj) / (1 - (1-ki-ei)/m*∑Bj);
Bi = (1-ki-ei)/m / (1 - (1-ki-ei)/m*∑Bj);
Ci = ( (1-ki-ei)+(1-ki-ei)/m*∑Cj ) / (1 - (1-ki-ei)/m*∑Bj); 对于叶子结点
Ai = ki;
Bi = 1 - ki - ei;
Ci = 1 - ki - ei; 从叶子结点开始,直到算出 A1,B1,C1; E[1] = A1*E[1] + B1*0 + C1;
所以
E[1] = C1 / (1 - A1);
若 A1趋近于1则无解...
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int len,head[];
double A,B,C;
double k[],e[];
struct node
{
int now,next;
}tree[];
void add(int x,int y)
{
tree[len].now=y;
tree[len].next=head[x];
head[x]=len++;
}
void dfs(int root,int p)
{
int i,son,m=;
double a=,b=,c=,q;
for(i=head[root];i!=-;i=tree[i].next)
{
son=tree[i].now;
if(son==p)
{
continue;
}
dfs(son,root);
a+=A;
b+=B;
c+=C;
m++; } if(p != -)++m;
q=(-k[root]-e[root])/m;
A=(k[root]+q*a)/(-q*b);
B=q/(-q*b);
C=(-k[root]-e[root]+q*c)/(-q*b);
}
int main()
{
int t,n,a,b,j,i;
int x,y;
scanf("%d",&t);
for(j=;j<=t;j++)
{ len=;
memset(head,-,sizeof(head));
memset(e,,sizeof(e));
memset(k,,sizeof(k));
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
add(b,a);
}
for(i=;i<=n;i++)
{
scanf("%d%d",&x,&y);
// printf("x=%d,y=%d\n",x,y);
k[i]=x/100.0;
e[i]=y/100.0;
// printf("k[i]=%lf,e[i]=%lf\n",k[i],e[i]);
}
dfs(,-);
if(-A<1e-)
printf("Case %d: impossible\n",j);
else
printf("Case %d: %lf\n",j,C/(-A));
}
return ;
}
HDU-4035 Maze的更多相关文章
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- HDU 4035 Maze 概率dp,树形dp 难度:2
http://acm.hdu.edu.cn/showproblem.php?pid=4035 求步数期望,设E[i]为在编号为i的节点时还需要走的步数,father为dfs树中该节点的父节点,son为 ...
- hdu 4035 Maze 概率DP
题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点1处(概率为ki) ...
- HDU 4035 Maze(树形概率DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4035 题意:一棵树,从结点1出发,在每个结点 i 都有3种可能:(1)回到结点1 , 概率 Ki:(2 ...
- hdu 4035 Maze(期待更多经典的树DP)
Maze Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65768/65768 K (Java/Others) Total Submi ...
- HDU.4035.Maze(期望DP)
题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...
- HDU 4035 Maze 概率DP 搜索
解题报告链接: http://www.cnblogs.com/kuangbin/archive/2012/10/03/2711108.html 先推公式,设计状态,令DP[i]表示在房间i退出要走步数 ...
- HDU 4035:Maze(概率DP)
http://acm.split.hdu.edu.cn/showproblem.php?pid=4035 Maze Special Judge Problem Description When w ...
- hdu 4035 2011成都赛区网络赛E 概率dp ****
太吊了,反正我不会 /* HDU 4035 dp求期望的题. 题意: 有n个房间,由n-1条隧道连通起来,实际上就形成了一棵树, 从结点1出发,开始走,在每个结点i都有3种可能: 1.被杀死,回到结点 ...
- hdu 5094 Maze 状态压缩dp+广搜
作者:jostree 转载请注明出处 http://www.cnblogs.com/jostree/p/4092176.html 题目链接:hdu 5094 Maze 状态压缩dp+广搜 使用广度优先 ...
随机推荐
- hdu 4335 What is N?
此题用到的公式:a^b%c=a^(b%phi(c)+phi(c))%c (b>=phi(c)). 1.当n!<phi(p)时,直接暴力掉: 2.当n!>=phi(p) &&a ...
- Android service的开启和绑定,以及调用service的方法
界面: <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android= ...
- hibernate.cfg.xml hibernate 配置文件模板
<?xml version='1.0' encoding='UTF-8'?> <!--表明解析本XML文件的DTD文档位置,DTD是Document Type Definition ...
- cojs 简单的求和问题 解题报告
一个上午写了两个数据生成器,三个暴力和两个正解以及一个未竣工的伪正解思路 真是累死本宝宝了 首先这个题目暴力我的数据是有很多良心分的 但是不同的暴力拿到的分数也会有所差距,由于是题解就不说暴力怎么写了 ...
- Filter高级开发
孤傲苍狼 只为成功找方法,不为失败找借口! javaweb学习总结(四十三)——Filter高级开发 在filter中可以得到代表用户请求和响应的request.response对象,因此在编程中可以 ...
- React组件测试(模拟组件、函数和事件)
一.模拟组件 1.用到的工具 (1)browerify (2)jasmine-react-helpers (3)rewireify(依赖注入) (4)命令:browserify - t reactif ...
- App应用与思考
我为什么没有加入苹果的iOS APP移动大军?http://blog.csdn.net/Code_GodFather/article/details/7956858 ----------------- ...
- C#基础精华08(反射,程序集)
什么是程序集? 程序集是.net中的概念. .net中的dll与exe文件都是程序集.(exe与dll的区别?) 程序集(Assembly),可以看做是一堆相关类打一个包,相当于java中的jar包( ...
- tomcat中如何运行war包呢
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAPQAAADRCAIAAAB0LAgsAAAQtklEQVR4nO2d7W/bxh3H9ZfZbRrFOj
- cmd命令行指定系统延迟关机时间
shutdown -s -t 3600 -c "想要显示的注释" -f 各参数的意思:-s 动作为关机 -t 3600 延迟3600秒关机 -c "想要显示的注释&quo ...