题目链接

Problem Description

国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:

首先,给每位新娘打扮得几乎一模一样,并盖上大大的红盖头随机坐成一排;

然后,让各位新郎寻找自己的新娘.每人只准找一个,并且不允许多人找一个.

最后,揭开盖头,如果找错了对象就要当众跪搓衣板...

看来做新郎也不是容易的事情...

假设一共有N对新婚夫妇,其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

Input

输入数据的第一行是一个整数C,表示测试实例的个数,然后是C行数据,每行包含两个整数N和M(1<M<=N<=20)。

Output

对于每个测试实例,请输出一共有多少种发生这种情况的可能,每个实例的输出占一行。

Sample Input

2

2 2

3 2

Sample Output

1

3

分析:

首先对于n个新郎里面有m个人来进行选择,就是一个简单的组合问题,但是如何保证这些人选的都是错误的呢,就要用到错排公式。

第一步,“错排” 1 号元素(将 1 号元素排在第 2 至第 n 个位置之一),有 n - 1 种方法。

第二步,“错排”其余 n - 1 个元素,按如下顺序进行。视第一步的结果,若 1 号元素落在第 k 个位置,第二步就先把 k 号元素“错排”好, k 号元素的不同排法将导致两类不同的情况发生:

( 1 ) k 号元素排在第 1 个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;

( 2 ) k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置,于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。

据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。

错排公式为:f [i ] =(i-1)*( f [ i-1 ] + f [ i-2 ] )

通式 : f(n)=n! (1/2!-1/3!+······+(-1)^n/n!)

代码:

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
int n,m;
long long int a[55];
void fun1()//错排公式
{
a[1]=0;
a[2]=1;
for(long long int i=3; i<=20; i++)
a[i]=(i-1)*(a[i-2]+a[i-1]);
}
long long int calculate(int n,int m)//计算组合数
{
long long int ans1=1;
for(int i=n; i>m; i--)
ans1*=i;
long long int ans2=1;
for(int i=2; i<=n-m; i++)
ans2*=i;
return ans1/ans2;
}
int main()
{
int t;
fun1();
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",calculate(n,m)*a[m]);
}
return 0;
}

HDU 2049 不容易系列之(4)——考新郎 (错排+组合)的更多相关文章

  1. hdu 2049 不容易系列之(4)——考新郎 (错排递推)

    当n个编号元素放在n个编号位置,元素编号与位置编号各不对应的方法数用M(n)表示,那么M(n-1)就表示n-1个编号元素放在n-1个编号位置,各不对应的方法数,其它类推. 第一步,把第n个元素放在一个 ...

  2. hdu2049 不容易系列之(4)——考新郎 错排+组合 一共有N对新婚夫妇,N个新娘随机坐成一排,每个新郎只能选一个, 其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  3. [HDU 2049] 不容易系列之(4)——考新郎 (错排问题)

    不容易系列之(4)——考新郎 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2049 题目大意: 有N对新婚夫妇,其中所有的新娘站成一列,都盖上了红布. ...

  4. hdu 2049 不easy系列之(4)——考新郎

    不easy系列之(4)--考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  5. HDU 2049 不容易系列之(4)——考新郎 (递推,含Cmn公式)

    不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)To ...

  6. HDU2049 不容易系列之(4)考新郎 —— 错排

    题目链接:https://vjudge.net/problem/HDU-2049 不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others)    Me ...

  7. E - 不容易系列之(4)――考新郎 错排数公式

    国庆期间,省城HZ刚刚举行了一场盛大的集体婚礼,为了使婚礼进行的丰富一些,司仪临时想出了有一个有意思的节目,叫做"考新郎",具体的操作是这样的:  首先,给每位新娘打扮得几乎一模一 ...

  8. hdu 2049 不容易系列之(4)——考新郎

    在本博AC代码中,求CNM用的是Anm/amm没用阶乘的形式,两者皆可 #include <stdio.h> int main(void) { long long a,b,larr[21] ...

  9. HDU 2049 不容易系列之(4)——考新郎( 错排 )

    链接:传送门 思路:错排水题,从N个人中选出M个人进行错排,即 C(n,m)*d[m] 补充:组合数C(n,m)能用double计算吗?第二部分有解释 Part 1. 分别求出来组合数的分子和分母然后 ...

随机推荐

  1. Windos 下python2.7安装 pymssql 解决方案

    最近在学python,到安装pymssql这一块遇到了不少问题. 第一:如何安装python 模块,也是最主要的问题. 可以这么理解:在安装python其它模块之前,可以先安装一个负责安装模块的模块. ...

  2. Spring学习总结之面向切面(AOP)

    AOP术语 通知(advice):定义切面是什么以及什么时候使用 连接点(join point):应用在执行过程中能够插入切面的点 切点(pointcut):切点的定义会匹配通知所要织入的一个或多个连 ...

  3. java实验报告一

    一.实验内容 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 二.实验步骤 (一)命令行下Java程序开发 1. 首先双击桌面上的Xface终 ...

  4. 20135316王剑桥Linux内核学习笔记第三周

    20135316王剑桥 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC 1000029000 三个法宝:存储程序计算机.函数调 ...

  5. python 图像处理(从安装Pillow开始)

    python2.x及以下用的是PIL(图像处理库是 PIL(Python Image Library)),最新版本是 1.1.7  可在http://www.pythonware.com/produc ...

  6. Daily Scrum - 11/25

    今天是Sprint 2的最后一天,我们在下午的课上对之前两个Sprint作了比较详尽的Review,并在课后Daily Scrum上讨论制订了Sprint 3的任务安排.具体Task会在明天更新在TF ...

  7. week5-Link Layer

    Technology:Internets and Packets course Layer 1 : Link Introduction/The Link Layer moving from histo ...

  8. 『编程题全队』Alpha 阶段冲刺博客Day7

    1.每日站立式会议 1.会议照片 2.昨天已完成的工作统计 孙志威: 1.添加了网络通信管理类 2.稍微修改了燃尽图模块ChartWidget 3.在主窗口中添加了用户信息框 4.重构了项目中的文件结 ...

  9. centos 7 安装截图软件shutter

    1.解决 epel-release依赖问题 ,执行命令: yum insatll epel-release 2.然后下载nux-dextop-release-0-5.el7.nux.noarch.rp ...

  10. everything 提供http和ftp的功能

    1. 早上起床看知乎,发现everything 有http和ftp的功能, 简单看了一下的确很强大.. 就是有点危险.. 功能位置. 2. 最下面有FTP和HTTP 可以进行启用 这是http的 建议 ...