[国家集训队2012]middle
http://cogs.pro:8080/cogs/problem/problem.php?pid=1763
二分答案x
把区间内>=x的数设为1,<x的数设为-1
左端点在[a,b]之间,右端点在[c,d]之间的子序列中,若中位数>=x,
那么 [b+1,c-1]的区间和+[a,b]的最大右子段和+[c,d]的最大左子段和>=0
查询可以用线段树
多组询问,不能每一次二分都重设1和-1
所以用主席树
其中第i棵线段树表示<=i的都被设成了-1
因为主席树是线段树的前缀和,所以一次修改只需要改第i棵线段树,就可以得到<=i的都被设成-1的线段树
#include<cstdio>
#include<iostream>
#include<algorithm> #define N 20001 using namespace std; int n; pair<int,int>a[N]; int cnt;
int root[N],lc[N*],rc[N*]; int q[]; struct node
{
int sum,lmax,rmax; node operator + (node p)
{
node c;
c.sum=sum+p.sum;
c.lmax=max(lmax,sum+p.lmax);
c.rmax=max(p.rmax,rmax+p.sum);
return c;
} }e[N*],zero; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=;
return;
}
int mid=l+r>>;
build(lc[k],l,mid);
build(rc[k],mid+,r);
e[k]=e[lc[k]]+e[rc[k]];
} void change(int pre,int &k,int l,int r,int pos)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=-;
return;
}
int mid=l+r>>;
if(pos<=mid)
{
rc[k]=rc[pre];
change(lc[pre],lc[k],l,mid,pos);
}
else
{
lc[k]=lc[pre];
change(rc[pre],rc[k],mid+,r,pos);
}
e[k]=e[lc[k]]+e[rc[k]];
} node query(int k,int l,int r,int opl,int opr)
{
if(opl>opr) return zero;
if(l>=opl && r<=opr) return e[k];
int mid=l+r>>;
if(opr<=mid) return query(lc[k],l,mid,opl,opr);
if(opl>mid) return query(rc[k],mid+,r,opl,opr);
return query(lc[k],l,mid,opl,opr)+query(rc[k],mid+,r,opl,opr);
} bool check(int pos)
{
if(query(root[pos],,n,q[],q[]).rmax+query(root[pos],,n,q[]+,q[]-).sum+query(root[pos],,n,q[],q[]).lmax>=) return true;
return false;
} int main()
{
freopen("nt2012_middle.in","r",stdin);
freopen("nt2012_middle.out","w",stdout);
read(n);
for(int i=;i<=n;++i)
{
read(a[i].first);
a[i].second=i;
}
sort(a+,a+n+);
build(root[],,n);
for(int i=;i<=n;++i) change(root[i-],root[i],,n,a[i].second);
int m;
read(m);
int ans=;
int l,r,mid;
while(m--)
{
for(int i=;i<;++i)
{
read(q[i]);
q[i]+=ans;
q[i]%=n;
q[i]++;
}
sort(q,q+);
l=,r=n;
while(l<=r)
{
mid=l+r>>;
if(check(mid-)) ans=mid,l=mid+;
else r=mid-;
}
ans=a[ans].first;
cout<<ans<<'\n';
}
}
1763. [国家集训队2012]middle
★★★☆ 输入文件:nt2012_middle.in 输出文件:nt2012_middle.out 简单对比
时间限制:3 s 内存限制:1024 MB
【大意】
一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
给你一个长度为n的序列s。
回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。
位置也从0开始标号。
我会使用一些方式强制你在线。
【输入格式】
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。
【输出格式】
【数据规模和约定】
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000
【样例输入】
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0
【样例输出】
271451044
969056313
[国家集训队2012]middle的更多相关文章
- [国家集训队2012]middle(陈立杰)
我是萌萌的传送门 我是另一个萌萌的传送门 脑残错误毁一下午…… 其实题解早就烂大街了,然而很久之前我只知道是二分答案+主席树却想不出来这俩玩意儿怎么一块儿用的……今天又翻了几篇题解才恍然大悟,是把权值 ...
- [国家集训队2012]JZPFAR
[国家集训队2012]JZPFAR 题目 平面上有n个点.现在有m次询问,每次给定一个点(px, py)和一个整数k,输出n个点中离(px, py)的距离第k大的点的标号.如果有两个(或多个)点距离( ...
- [国家集训队2012]tree(陈立杰)
[国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...
- 「国家集训队」middle
「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...
- 数据结构(动态树):[国家集训队2012]tree(伍一鸣)
[问题描述] 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原 ...
- 【国家集训队2012】tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 ...
- [COGS 1799][国家集训队2012]tree(伍一鸣)
Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2 ...
- cogs1799 [国家集训队2012]tree(伍一鸣)
LCT裸题 注意打标记之间的影响就是了 这个膜数不会爆unsigned int #include<cstdio> #include<cstdlib> #include<a ...
- BZOJ2568 [国家集训队2012]比特集合
Description 比特集合是一种抽象数据类型(Abstract Data Type) ,其包含一个集合S,并支持如下几种操作: INS M : 将元素 M 插入到集合S中: DEL M : 将集 ...
随机推荐
- 取两张mysql表中分别两个字段相同的值
看起来有点绕口吧,举个例子吧,如图 两张表,字段名也不同字段gs 和另一张表 gsmc 的有些值是相同的 我们要做的就是把这个相同的值找出来 会写这个sql语句就可以 只写重点 $sql2 = &q ...
- 【Tableau】电商广告投放的地域分析
分析师的职责是利用处理数据获取信息,提炼规律,帮助企业正确决策业务方向. 所以,一个好的分析师绝不能被数据所困,既要深入业务,理解业务,也要高瞻远瞩,以领导者的思维借助数据分析的辅助做出判断. [结构 ...
- OD之绕过序列号验证(二)
上次是修改程序的标题,大家应该感觉这只是一个起点而已,接下来我们可以尝试绕过序列号验证,这种技术应用在很多软件中,比如淘宝上要买什么的软件,商家都会发给`你一个用户名和密码,而且还有试用期什么的,这确 ...
- Docker swarm集群搭建教程
一.什么是Swarm Swarm这个项目名称特别贴切.在Wiki的解释中,Swarm behavior是指动物的群集行为.比如我们常见的蜂群,鱼群,秋天往南飞的雁群都可以称作Swarm behavio ...
- N的阶乘:高精度
N的阶乘 题目描述 输入一个正整数N,输出N的阶乘. 输入描述: 正整数N(0<=N<=1000) 输出描述: 输入可能包括多组数据,对于每一组输入数据,输出N的阶乘 示例1 输入 4 ...
- python类属性在继承中的修改的影响
class A(object): x = 1 class B(A): pass class C(A): pass # 通过父类修改类属性,子类继承的类属性也改变 A.x = 3 print(A.x, ...
- 团队作业week7
软件分析和用户需求调查 具体细则见: http://www.cnblogs.com/xinz/p/3308608.html
- SCRUM 12.03
第二轮迭代从今天起正式开始了.12月3日,我们举行了一次组会. 第一轮迭代结束时,我们意识到第二轮迭代需要实现的功能主要如下: 在下次迭代的时候实现对多个网站的信息进行比较取最优惠的选择,目前我们劲针 ...
- "Gun N' Rose" Team学习心得
如果我比别人看得更远,只因为我站在巨人的肩膀上. ——牛顿 高级软件工程课程终于开课了!第 ...
- input 清空值。(转载)
ref顾名思义我们知道,其实它就可以被看座是一个组件的参考,也可以说是一个标识.作为组件的属性,其属性值可以是一个字符串也可以是一个函数. 其实,ref的使用不是必须的.即使是在其适用的场景中也不是非 ...