http://cogs.pro:8080/cogs/problem/problem.php?pid=1763

二分答案x

把区间内>=x的数设为1,<x的数设为-1

左端点在[a,b]之间,右端点在[c,d]之间的子序列中,若中位数>=x,

那么 [b+1,c-1]的区间和+[a,b]的最大右子段和+[c,d]的最大左子段和>=0

查询可以用线段树

多组询问,不能每一次二分都重设1和-1

所以用主席树

其中第i棵线段树表示<=i的都被设成了-1

因为主席树是线段树的前缀和,所以一次修改只需要改第i棵线段树,就可以得到<=i的都被设成-1的线段树

#include<cstdio>
#include<iostream>
#include<algorithm> #define N 20001 using namespace std; int n; pair<int,int>a[N]; int cnt;
int root[N],lc[N*],rc[N*]; int q[]; struct node
{
int sum,lmax,rmax; node operator + (node p)
{
node c;
c.sum=sum+p.sum;
c.lmax=max(lmax,sum+p.lmax);
c.rmax=max(p.rmax,rmax+p.sum);
return c;
} }e[N*],zero; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void build(int &k,int l,int r)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=;
return;
}
int mid=l+r>>;
build(lc[k],l,mid);
build(rc[k],mid+,r);
e[k]=e[lc[k]]+e[rc[k]];
} void change(int pre,int &k,int l,int r,int pos)
{
k=++cnt;
if(l==r)
{
e[k].sum=e[k].lmax=e[k].rmax=-;
return;
}
int mid=l+r>>;
if(pos<=mid)
{
rc[k]=rc[pre];
change(lc[pre],lc[k],l,mid,pos);
}
else
{
lc[k]=lc[pre];
change(rc[pre],rc[k],mid+,r,pos);
}
e[k]=e[lc[k]]+e[rc[k]];
} node query(int k,int l,int r,int opl,int opr)
{
if(opl>opr) return zero;
if(l>=opl && r<=opr) return e[k];
int mid=l+r>>;
if(opr<=mid) return query(lc[k],l,mid,opl,opr);
if(opl>mid) return query(rc[k],mid+,r,opl,opr);
return query(lc[k],l,mid,opl,opr)+query(rc[k],mid+,r,opl,opr);
} bool check(int pos)
{
if(query(root[pos],,n,q[],q[]).rmax+query(root[pos],,n,q[]+,q[]-).sum+query(root[pos],,n,q[],q[]).lmax>=) return true;
return false;
} int main()
{
freopen("nt2012_middle.in","r",stdin);
freopen("nt2012_middle.out","w",stdout);
read(n);
for(int i=;i<=n;++i)
{
read(a[i].first);
a[i].second=i;
}
sort(a+,a+n+);
build(root[],,n);
for(int i=;i<=n;++i) change(root[i-],root[i],,n,a[i].second);
int m;
read(m);
int ans=;
int l,r,mid;
while(m--)
{
for(int i=;i<;++i)
{
read(q[i]);
q[i]+=ans;
q[i]%=n;
q[i]++;
}
sort(q,q+);
l=,r=n;
while(l<=r)
{
mid=l+r>>;
if(check(mid-)) ans=mid,l=mid+;
else r=mid-;
}
ans=a[ans].first;
cout<<ans<<'\n';
}
}

1763. [国家集训队2012]middle

★★★☆   输入文件:nt2012_middle.in   输出文件:nt2012_middle.out   简单对比
时间限制:3 s   内存限制:1024 MB

middle(陈立杰)
时间限制:3.0s   内存限制:1.0GB

【大意】

一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整。
给你一个长度为n的序列s。
回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[c,d]之间的子序列中,最大的中位数。
其中a<b<c<d。
位置也从0开始标号。
我会使用一些方式强制你在线。

【输入格式】

第一行序列长度n。
接下来n行按顺序给出a中的数。
接下来一行Q。
然后Q行每行a,b,c,d,我们令上个询问的答案是x(如果这是第一个询问则x=0)。
令数组q={(a+x)%n,(b+x)%n,(c+x)%n,(d+x)%n}。
将q从小到大排序之后,令真正的要询问的a=q[0],b=q[1],c=q[2],d=q[3]。
输入保证满足条件。

【输出格式】

Q行依次给出询问的答案。

【数据规模和约定】

0:n,Q<=100
1,...,5:n<=2000
0,...,19:n<=20000,Q<=25000

【样例输入】

5
170337785
271451044
22430280
969056313
206452321
3
3 1 0 2
2 3 1 4
3 1 4 0

【样例输出】

271451044
271451044
969056313

[国家集训队2012]middle的更多相关文章

  1. [国家集训队2012]middle(陈立杰)

    我是萌萌的传送门 我是另一个萌萌的传送门 脑残错误毁一下午…… 其实题解早就烂大街了,然而很久之前我只知道是二分答案+主席树却想不出来这俩玩意儿怎么一块儿用的……今天又翻了几篇题解才恍然大悟,是把权值 ...

  2. [国家集训队2012]JZPFAR

    [国家集训队2012]JZPFAR 题目 平面上有n个点.现在有m次询问,每次给定一个点(px, py)和一个整数k,输出n个点中离(px, py)的距离第k大的点的标号.如果有两个(或多个)点距离( ...

  3. [国家集训队2012]tree(陈立杰)

    [国家集训队2012]tree(陈立杰) 题目 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有need条白色边的生成树.题目保证有解. INPUT 第一行V,E,need分别表示 ...

  4. 「国家集训队」middle

    「国家集训队」middle 传送门 按照中位数题的套路,二分答案 \(mid\),序列中 \(\ge mid\) 记为 \(1\),\(< mid\) 的记为 \(-1\) 然后只要存在一个区间 ...

  5. 数据结构(动态树):[国家集训队2012]tree(伍一鸣)

    [问题描述] 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2:将树中原 ...

  6. 【国家集训队2012】tree(伍一鸣)

    Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一:  + u v c:将u到v的路径上的点的权值都加上自然数c:  - u1 v1 u2 ...

  7. [COGS 1799][国家集训队2012]tree(伍一鸣)

    Description 一棵n个点的树,每个点的初始权值为1.对于这棵树有q个操作,每个操作为以下四种操作之一: + u v c:将u到v的路径上的点的权值都加上自然数c: - u1 v1 u2 v2 ...

  8. cogs1799 [国家集训队2012]tree(伍一鸣)

    LCT裸题 注意打标记之间的影响就是了 这个膜数不会爆unsigned int #include<cstdio> #include<cstdlib> #include<a ...

  9. BZOJ2568 [国家集训队2012]比特集合

    Description 比特集合是一种抽象数据类型(Abstract Data Type) ,其包含一个集合S,并支持如下几种操作: INS M : 将元素 M 插入到集合S中: DEL M : 将集 ...

随机推荐

  1. Javascript如何实现GPU加速?

    一.什么是Javascript实现GPU加速? CPU与GPU设计目标不同,导致它们之间内部结构差异很大.CPU需要应对通用场景,内部结构非常复杂.而GPU往往面向数据类型统一,且相互无依赖的计算.所 ...

  2. LintCode——Chalkboard XOR Game(黑板游戏)

    黑板游戏: We are given non-negative integers nums[i] which are written on a chalkboard. Alice and Bob ta ...

  3. X32位 天堂2 二章/三章 服务端协议号修改方法

    [本方法适合于2004-2006年之间天堂2由初章服务端修改至二章.三章端时协议号匹配问题]服务端版本位32位初章服务端 目前大部分SF用的协议号情况: 服务端是419 客户端是 417 419 42 ...

  4. 1089. Insert or Merge (25)-判断插入排序还是归并排序

    判断插入排序很好判断,不是的话那就是归并排序了. 由于归并排序区间是2.4.8开始递增的,所以要判断给出的归并排序执行到哪一步,就要k从2开始枚举. 然后再对每个子区间进行一下sort即可. #inc ...

  5. 2017中国人工智能公司榜单发布,颠覆AT的AI独角兽全在这

    每年12月,创业邦研究中心评选并报道“中国创新成长企业100强”,这个榜单我们已经连续做了8年,是中国最有潜力的创业新贵榜,受到了业内广泛认可.从2015年开始我们发现,人工智能上榜企业明显增多,20 ...

  6. python3 selenium打开Chrome报错闪退问题

    ChromeDriver不匹配 Google Chrome 已是最新版本 版本 64.0.3282.186(正式版本) (32 位)   ChromeDriver应该选择2.35 下载链接:https ...

  7. SDN开源项目以及组织机构

    SDN开源项目以及组织机构 以上内容均摘自网络 如有侵权,请转告笔者,立即删除 两大组织 ONF (Open Networking Foundation) Google.Facebook.Micros ...

  8. Adobe X沙箱

    一.Adobe X沙箱简介 Adobe Reader X自从引入沙箱以来,对其攻击的难度就提高了很多.Reader X的沙箱是基于Google的Chrome沙箱,Chrome是开源的,Reader X ...

  9. PAT 甲级 1087 All Roads Lead to Rome

    https://pintia.cn/problem-sets/994805342720868352/problems/994805379664297984 Indeed there are many ...

  10. [转帖]VMware Vsphere 6.0安装部署 (三) vCenter Server安装

    VMware Vsphere 6.0安装部署 (三) vCenter Server安装 2016年08月29日 14:59:14 dAng1r0Us 阅读数:72942   版权声明:本文为博主原创文 ...