起源:

我们平时用的精度 accuracy,也就是整体的正确率

acc=predict_right_num/predict_num

这个虽然常用,但不能满足所有任务的需求。比如,因为香蕉太多了,也不能拨开人工的一个一个的看它的好坏 (我爱吃啊,想想就心疼),此时我们就需要有一种方法,代替拨开香蕉这种粗鲁的手段。这时我们需要通过一些测试,看看哪种方法能更加准确的预测。我们可以通过

“准”:预测的准确度,就是我预测的结果中真正好的香蕉要越多越好;

“全”:就是所有的好的香蕉预测出来的越多越好,虽然把有些坏的也预测是好的了,那也不管,“全” 就行。好的香蕉越多的出现在预测结果里

其实这两者都想要达到就好了,但是不行的:

比如 "准", 我就预测一个算了,好的香蕉肯定比坏的比例高,也就是我只预测一个,100% 比例几率最大了,这时就不 “全” 了,海有好多好的香蕉不在预测结果里面

再比如 "全", 我去全部预测成好的,这真正好的都在我的预测里,也就是 100%。可是这时的 "准" 就一点都不准了。。

所以就必须来平衡这俩同志的关系了,怎么平衡呢?肯定是通过权重来的呀,此时,F 值登上历史舞台!

实例说明:

实例化讲解吧。比如我们的香蕉中 1 表示好的,0 表示坏的,有 10 个香蕉:

  gold :  [1,1,1,1,1,0,0,0,0,0]

  pred:  [1,0,1,1,1,1,1,0,0,0]

注释:gold 是现实的好坏;pred 是预测的好坏。

P(Precision) 查准率,准确率:就是上面说的 "准"。字面意思好理解呀,就是在预测当中查找准确个数的比例。公式为:

  P = 真正预测准确的数量 / 预测是准确的数量 = 4 / 6

R(Recall) 查全率,召回率:就是上面的 "全"。根据字面理解,在预测中看看真正预测对的占全有对的比率。公式为:

  R = 真正预测准确的数量 / 所有真正好的数量  = 4 / 5

准确率就是找得对,召回率就是找得全。大概就是你问问一个模型,这堆东西是不是某个类的时候,准确率就是 它说是,这东西就确实是的概率吧,召回率就是, 它说是,但它漏说了(1 - 召回率)这么多

F 值 综合评价指标,是:

  F(k) = ( 1 + k ) * P * R / ( ( k*k ) * P + R )

注释:k>0 度量了 查全率 对 查准率 的相对重要性。k>1 查全率有更大影响;k<1查准率有更大影响。

在这个实例中可以表示为:k>1 就是查全率有更大影响,就是好的香蕉最好都预测出来,因为你觉得不想把好的当成坏的扔点 (真可惜,我爱吃啊) ;k<1 查准率有更大影响,就是一定要准确,省时间,省力更重要,不在乎好的香蕉当坏的扔点。

而我们常用的是 F1,就是 F(1) 的意思,k=1,比如我们做一个分类任务,这几个类觉得都一样重要。此时:

F(1) = 2 * P * R / ( P + R ) = 2*4/6*4/5/(4/6+4/5) = 8/11

P(查准率),R(查全率),F1 值的更多相关文章

  1. 详谈P(查准率),R(查全率),F1值

    怎么来的? 我们平时用的精度accuracy,也就是整体的正确率 acc = predict_right_num / predict_num 这个虽然常用,但不能满足所有任务的需求.比如,因为香蕉太多 ...

  2. 混淆矩阵、准确率、精确率/查准率、召回率/查全率、F1值、ROC曲线的AUC值

    准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前 ...

  3. 机器学习性能度量指标:ROC曲线、查准率、查全率、F1

    错误率 在常见的具体机器学习算法模型中,一般都使用错误率来优化loss function来保证模型达到最优. \[错误率=\frac{分类错误的样本}{样本总数}\] \[error=\frac{1} ...

  4. 【分类问题中模型的性能度量(一)】错误率、精度、查准率、查全率、F1详细讲解

    文章目录 1.错误率与精度 2.查准率.查全率与F1 2.1 查准率.查全率 2.2 P-R曲线(P.R到F1的思维过渡) 2.3 F1度量 2.4 扩展 性能度量是用来衡量模型泛化能力的评价标准,错 ...

  5. 吴恩达机器学习笔记40-用调和平均数F来进行查准率和查全率之间的权衡(Trading Off Precision and Recall by F sore)

    在很多应用中,我们希望能够保证查准率和查全率的相对平衡. 我们可以将不同阀值情况下,查全率与查准率的关系绘制成图表,曲线的形状根据数据的不同而不同: 我们希望有一个帮助我们选择这个阀值的方法.一种方法 ...

  6. 精确率、准确率、召回率和F1值

    当我们训练一个分类模型,总要有一些指标来衡量这个模型的优劣.一般可以用如题的指标来对预测数据做评估,同时对模型进行评估. 首先先理解一下混淆矩阵,混淆矩阵也称误差矩阵,是表示精度评价的一种标准格式,用 ...

  7. 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC--周振洋

    机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标 ...

  8. 机器学习笔记--classification_report&精确度/召回率/F1值

    https://blog.csdn.net/akadiao/article/details/78788864 准确率=正确数/预测正确数=P 召回率=正确数/真实正确数=R F1 F1值是精确度和召回 ...

  9. BERT模型在多类别文本分类时的precision, recall, f1值的计算

    BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...

  10. D. Powerful array 离线+莫队算法 给定n个数,m次查询;每次查询[l,r]的权值; 权值计算方法:区间某个数x的个数cnt,那么贡献为cnt*cnt*x; 所有贡献和即为该区间的值;

    D. Powerful array time limit per test seconds memory limit per test megabytes input standard input o ...

随机推荐

  1. 用宏实现C/C++从非零整数开始的数组

    相信大家在刚学习C/C++时,都会对数组下标从0开始编号有疑惑.尽管我是喜欢从0开始编号的“0党”,但是也有很多的人是喜欢从1开始编号. 意识到C/C++数组与指针具有一定的相似性后,我开始构思如何仿 ...

  2. HGOI20180814 (NOIP 模拟Day1)

    100pts=40+60+0 rank 56 若串联那么显然是这样: 若并联那么显然是这样: 串联时C<1,并联时C>1,贪心策略<1时尽可能串联,>1时尽可能并联 考虑这样一 ...

  3. Xshell不能连接SSH的解决(附Kali2.0 SSH连接)

    异常处理汇总-服 务 器 http://www.cnblogs.com/dunitian/p/4522983.html 异常处理汇总-开发工具  http://www.cnblogs.com/duni ...

  4. 解题:国家集训队 Crash 的文明世界

    题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...

  5. 弹指之间 -- Slow Soul

    CHAPTER 16 慢灵魂乐 Slow Soul (8Beat) Slow Soul每小节内几乎都是以8分音符弹奏,又称之为8Beat节奏,80左右的速度最能表现此节奏特色. 示例曲目: 拥抱

  6. 形参与实参的区别---java基础

    1.形参变量只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元.因此,形参只在函数内部有效.函数调用结束返回主调用函数后则不能再使用该形参变量.2.实参可以是常量.变量.表达式.函数 ...

  7. 转:Xcode打印堆栈信息

    2#   分享于 14-11-26 19:15:36 Chrome 39.0.2171.71 Mac OS X 10.10.1 如果只是看调用栈的话,可以使用 lldb 的功能.在你的代码里面打上一个 ...

  8. npm install --save

    1. npm install:本地安装 2. npm install -g:全局安装 我们在使用 npm install 安装模块或插件时,有两种命令把它们写入到 package.json 文件中去, ...

  9. Python配置tab自动补全功能

    # cat tab.py #!/usr/bin/python # python tab file import sys import readline import rlcompleter impor ...

  10. B-树(B+树) 学习总结

    一,B-树的定义及介绍 为什么会有B-树? 熟悉的树的结构有二叉树查找树或者平衡二叉树……平衡二叉树保证最坏情况下各个操作的时间复杂度为O(logN),但是为了保持平衡,在插入或删除元素时,需要进行旋 ...