SPFA是改良后的BellmanFord(在刘汝佳的入门经典2上,甚至直接将SPFA归为BellmanFord的队列优化版本)。

这是算法的伪代码

d[s] = 0, 其余d[?] = INF;
将s入队,并做标记;
do{
取队首u。
for each (u, v){
如果d[v] > d[u] + dist(u→v)
d[v] = d[u] + dist(u→v)
如果v不在队里
v入队
}
}until 队列为空

  

SPFA最短路算法的更多相关文章

  1. 【算法】祭奠spfa 最短路算法dijspfa

    题目链接 本题解来源 其他链接 卡spfa的数据组 题解堆优化的dijkstra 题解spfa讲解 来自以上题解的图片来自常暗踏阴 使用前向星链表存图 直接用队列优化spfa struct cmp { ...

  2. SPFA 最短路算法

    SPFA算法 1.什么是spfa算法? SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA一般情况复杂度是O(m)O(m) ...

  3. dijkstra,belllman-ford,spfa最短路算法

    参考博客 时间复杂度对比: Dijkstra:  O(n2) Dijkstra + 优先队列(堆优化):  O(E+V∗logV) SPFA:  O(k∗E) ,k为每个节点进入队列的次数,一般小于等 ...

  4. 【最短路算法】Dijkstra+heap和SPFA的区别

    单源最短路问题(SSSP)常用的算法有Dijkstra,Bellman-Ford,这两个算法进行优化,就有了Dijkstra+heap.SPFA(Shortest Path Faster Algori ...

  5. 最短路算法详解(Dijkstra/SPFA/Floyd)

    新的整理版本版的地址见我新博客 http://www.hrwhisper.me/?p=1952 一.Dijkstra Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路.所以Dijkst ...

  6. 最短路算法(floyed+Dijkstra+bellman-ford+SPFA)

    最短路算法简单模板 一.floyed算法 首先对于floyed算法来说就是最短路径的动态规划解法,时间复杂度为O(n^3) 适用于图中所有点与点之间的最短路径的算法,一般适用于点n较小的情况. Flo ...

  7. 算法专题 | 10行代码实现的最短路算法——Bellman-ford与SPFA

    今天是算法数据结构专题的第33篇文章,我们一起来聊聊最短路问题. 最短路问题也属于图论算法之一,解决的是在一张有向图当中点与点之间的最短距离问题.最短路算法有很多,比较常用的有bellman-ford ...

  8. 近十年one-to-one最短路算法研究整理【转】

    前言:针对单源最短路算法,目前最经典的思路即标号算法,以Dijkstra算法和Bellman-Ford算法为根本演进了各种优化技术和算法.针对复杂网络,传统的优化思路是在数据结构和双向搜索上做文章,或 ...

  9. 浅谈k短路算法

    An Old but Classic Problem 给定一个$n$个点,$m$条边的带正权有向图.给定$s$和$t$,询问$s$到$t$的所有权和为正路径中,第$k$短的长度. Notice 定义两 ...

随机推荐

  1. #HTTP协议学习# (一)request 和response 解析

    注:本文转自:http://www.cnblogs.com/TankXiao/archive/2012/02/13/2342672.html , 粉字[]内内容为个人笔记 当今web程序的开发技术真是 ...

  2. VS 代码段

    系统默认代码段 代码段名 描    述 #if 该代码段用#if和#endif命令围绕代码 #region 该代码段用#region和#endregion命令围绕代码 ~ 该代码段插入一个析构函数 a ...

  3. mvn dependency:tree

    jar依赖冲突解决实践 前言 随着功能的增多,各种中间件的引入.应用以来的各种jar的规模极具膨胀,出现jar冲突和Class冲突的问题层出不穷,让人不胜其扰.本文针对冲突,提供一个排查和定位问题的最 ...

  4. [清华集训2015 Day1]玛里苟斯-[线性基]

    Description Solution 考虑k=1的情况.假设所有数中,第i位为1的数的个数为x,则最后所有的子集异或结果中,第i位为1的个数为$(C_{k}^{1}+C_{k}^{3}+...)$ ...

  5. 汇编 OD 调式

    OD调试  命令栏指令 一.OD调试 重新开始:Ctrl+F2 转到地址:CTRL+G 断点切换: F2 断点窗口: Alt+B 运行 : F9 暂停 : F12 单步步过: F8 //遇到CAL ...

  6. 【HNOI2018】游戏

    题面 题解 这道题目到底有没有靠谱一点的解法啊... 有很多种\(\color{green}{\mathrm{AC}}\)的方法,设\(L[i],R[i]\)表示点\(i\)最左边和最右边能够到达的位 ...

  7. TMS320VC5509的DAC输出TLV5620

    1. TLV5620的SPI数据是11位的 但是看图3和图4,感觉用2个字节应该也可以的,不知道行不行,可以试一试吧 2. 不过可惜的是5509A的SPI没有11位的,有点麻烦,只能先试试用两个字节行 ...

  8. [CF966F]May Holidays[分块+虚树]

    题意 给定 \(n\) 个点的树,初始所有颜色都是 \(0\) ,每个点有一个阈值 \(t\) ,每次可能会让一个点的颜色异或1,问每次操作之后有多少个点满足子树内的颜色为 \(1\) 的点的个数 \ ...

  9. Spring Boot(十一):Spring Boot 中 MongoDB 的使用

    MongoDB 是最早热门非关系数据库的之一,使用也比较普遍,一般会用做离线数据分析来使用,放到内网的居多.由于很多公司使用了云服务,服务器默认都开放了外网地址,导致前一阵子大批 MongoDB 因配 ...

  10. Salesforce随笔: 将Visualforce Page渲染为PDF文件(Render a Visualforce Page as a PDF File)

    参照 : Visualforce Developer Guide 第60页 <Render a Visualforce Page as a PDF File> 你可以用PDF渲染服务生成一 ...