【刷题】BZOJ 3522 [Poi2014]Hotel
Description
有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达。吉丽要给他的三个妹子各开(一个)房(间)。三个妹子住的房间要互不相同(否则要打起来了),为了让吉丽满意,你需要让三个房间两两距离相同。
有多少种方案能让吉丽满意?
Input
第一行一个数n。
接下来n-1行,每行两个数x,y,表示x和y之间有一条边相连。
Output
让吉丽满意的方案数。
Sample Input
7
1 2
5 7
2 5
2 3
5 6
4 5
Sample Output
5
HINT
【样例解释】
{1,3,5},{2,4,6},{2,4,7},{2,6,7},{4,6,7}
【数据范围】
n≤5000
Solution
先写了个普通的方法,
就是枚举每一个点,计算这个点为选的三个点的lca的方案数
这个只要在枚举了lca后遍历它的每个子树,当前子树内的一个点可以贡献之前的子树中深度与它相同的点中选两个的方案数,处理一下就好了
以下代码是可以过的:
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],sum[MAXN];
ll ans,val[2][MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int f,int dep)
{
ans+=val[1][dep],sum[dep]++;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f)continue;
else dfs(to[i],x,dep+1);
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
for(register int i=1;i<=n;++i)
{
for(register int j=beg[i];j;j=nex[j])
{
dfs(to[j],i,1);
for(register int j=1;j<=n;++j)val[1][j]+=val[0][j]*sum[j],val[0][j]+=sum[j],sum[j]=0;
}
for(register int j=1;j<=n;++j)val[0][j]=val[1][j]=0;
}
write(ans,'\n');
return 0;
}
之后为了做升级版,写了个没用长链剖分的 \(O(n^2)\) dp,也是当做一个过渡吧
设 \(f[u][k]\) 表示 \(u\) 的子树中距离 \(u\) 为 \(k\) 的点的个数, \(g[u][k]\) 表示 \(u\) 的子树中到LCA距离为 \(d\) ,\(u\) 到LCA距离为 \(d−k\) 的点对的数量。
转移就见程序吧,因为转移的顺序是对转移有影响的
这个程序被卡空间了,过不去,但是正确性是能够保证的:
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1];
ll f[MAXN][MAXN],g[MAXN][MAXN],ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int p)
{
f[x][0]=1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else
{
dfs(to[i],x);
for(register int j=0;j<=n;++j)
{
ans+=f[x][j]*g[to[i]][j+1]+(j?f[to[i]][j-1]*g[x][j]:0);
g[x][j]+=g[to[i]][j+1]+(j?f[x][j]*f[to[i]][j-1]:0);
if(j)f[x][j]+=f[to[i]][j-1];
}
}
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
dfs(1,0);
write(ans,'\n');
return 0;
}
【刷题】BZOJ 3522 [Poi2014]Hotel的更多相关文章
- BZOJ.3522.[POI2014]Hotel(DP)
题目链接 BZOJ 洛谷 以为裸点分治,但数据范围怎么这么小?快打完了发现不对.. n^2做的话其实是个水题.. 枚举每一个点为根,为了不重复计算,我们要求所求的三个点必须分别位于三棵子树上. 考虑当 ...
- bzoj 3522: [Poi2014]Hotel
呵呵,一开始天真的我以为求个 西格玛 C(??,3)就好了.. (题解:比枚举2个数的再多一个,,一样搞) #include <bits/stdc++.h> #define LL long ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 253 Solved: 117[Submit][Status ...
- 3522: [Poi2014]Hotel( 树形dp )
枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- bzoj 4543: [POI2014]Hotel加强版
Description 给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量 Solution 考虑暴力 \(DP\) 设 \(f[i][ ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- BZOJ3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 195 Solved: 85[Submit][Status] ...
随机推荐
- 2017-2018-2 20155229《网络对抗技术》Exp1:逆向及Bof基础实践
逆向及Bof基础实践 实践基础知识 管道命令: 能够将一个命令的执行结果经过筛选,只保留需要的信息. cut:选取指定列. 按指定字符分隔:只显示第n 列的数据 cut -d '分隔符' -f n 选 ...
- 20155301 Exp9 Web安全基础
20155301 Exp9 Web安全基础 1.实验后回答问题 (1)SQL注入攻击原理,如何防御 答 :原理: 利用现有应用程序,将恶意的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web ...
- # 2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用
2017-2018-2 20155319『网络对抗技术』Exp5:MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode exploit:使用者利用漏洞进行攻击 ...
- DynamicDataDisplay 实时曲线图的使用和沿轴移动的效果
原文:DynamicDataDisplay 实时曲线图的使用和沿轴移动的效果 由于项目需要,最近在找关于绘制实时曲线图的文章,但看了很多自己实现的话太慢,所以使用了第三方控件来实现(由 ...
- mfc 进程的诞生和死亡
进程概念 进程的诞生 进程的死亡 一. 进程: .简单的说 双击一个EXE图标时,系统就会产生一个相应的进程,分配相应的资源,并执行相应的代码. .标准一些的说法: 进程是一个具有独立功能 ...
- SSRS配置2:加密管理
在初始化Reporting Service时,SSRS会自动创建数据库[ReportServer],用于存储报表元数据,报表订阅,以及凭证(Credential)和连接信息等身份验证信息,身份验证数据 ...
- Flutter - ListView禁止用户上下滑动
ListView禁止用户上下滑动可以使用physics属性 physics: const NeverScrollableScrollPhysics()
- C#杂乱知识汇总
:first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...
- GitHub笔记(一)——本地库基础操作
零.基础概念理解——可以访问廖雪峰老师的网站https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c01 ...
- 《Linux内核设计与实现》第5章读书整理
<第五章 系统调用>笔记 5.1 与内核通信 系统调用在用户空间和硬件设备之间提供了一个中间层. 中间层的作用: 为用户空间提供一 ...