【刷题】BZOJ 3522 [Poi2014]Hotel
Description
有一个树形结构的宾馆,n个房间,n-1条无向边,每条边的长度相同,任意两个房间可以相互到达。吉丽要给他的三个妹子各开(一个)房(间)。三个妹子住的房间要互不相同(否则要打起来了),为了让吉丽满意,你需要让三个房间两两距离相同。
有多少种方案能让吉丽满意?
Input
第一行一个数n。
接下来n-1行,每行两个数x,y,表示x和y之间有一条边相连。
Output
让吉丽满意的方案数。
Sample Input
7
1 2
5 7
2 5
2 3
5 6
4 5
Sample Output
5
HINT
【样例解释】
{1,3,5},{2,4,6},{2,4,7},{2,6,7},{4,6,7}
【数据范围】
n≤5000
Solution
先写了个普通的方法,
就是枚举每一个点,计算这个点为选的三个点的lca的方案数
这个只要在枚举了lca后遍历它的每个子树,当前子树内的一个点可以贡献之前的子树中深度与它相同的点中选两个的方案数,处理一下就好了
以下代码是可以过的:
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1],sum[MAXN];
ll ans,val[2][MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int f,int dep)
{
ans+=val[1][dep],sum[dep]++;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f)continue;
else dfs(to[i],x,dep+1);
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
for(register int i=1;i<=n;++i)
{
for(register int j=beg[i];j;j=nex[j])
{
dfs(to[j],i,1);
for(register int j=1;j<=n;++j)val[1][j]+=val[0][j]*sum[j],val[0][j]+=sum[j],sum[j]=0;
}
for(register int j=1;j<=n;++j)val[0][j]=val[1][j]=0;
}
write(ans,'\n');
return 0;
}
之后为了做升级版,写了个没用长链剖分的 \(O(n^2)\) dp,也是当做一个过渡吧
设 \(f[u][k]\) 表示 \(u\) 的子树中距离 \(u\) 为 \(k\) 的点的个数, \(g[u][k]\) 表示 \(u\) 的子树中到LCA距离为 \(d\) ,\(u\) 到LCA距离为 \(d−k\) 的点对的数量。
转移就见程序吧,因为转移的顺序是对转移有影响的
这个程序被卡空间了,过不去,但是正确性是能够保证的:
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=5000+10;
int n,e,beg[MAXN],nex[MAXN<<1],to[MAXN<<1];
ll f[MAXN][MAXN],g[MAXN][MAXN],ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs(int x,int p)
{
f[x][0]=1;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==p)continue;
else
{
dfs(to[i],x);
for(register int j=0;j<=n;++j)
{
ans+=f[x][j]*g[to[i]][j+1]+(j?f[to[i]][j-1]*g[x][j]:0);
g[x][j]+=g[to[i]][j+1]+(j?f[x][j]*f[to[i]][j-1]:0);
if(j)f[x][j]+=f[to[i]][j-1];
}
}
}
int main()
{
read(n);
for(register int i=1;i<n;++i)
{
int u,v;read(u);read(v);
insert(u,v);insert(v,u);
}
dfs(1,0);
write(ans,'\n');
return 0;
}
【刷题】BZOJ 3522 [Poi2014]Hotel的更多相关文章
- BZOJ.3522.[POI2014]Hotel(DP)
题目链接 BZOJ 洛谷 以为裸点分治,但数据范围怎么这么小?快打完了发现不对.. n^2做的话其实是个水题.. 枚举每一个点为根,为了不重复计算,我们要求所求的三个点必须分别位于三棵子树上. 考虑当 ...
- bzoj 3522: [Poi2014]Hotel
呵呵,一开始天真的我以为求个 西格玛 C(??,3)就好了.. (题解:比枚举2个数的再多一个,,一样搞) #include <bits/stdc++.h> #define LL long ...
- 【刷题】BZOJ 4543 [POI2014]Hotel加强版
Description 同OJ3522 数据范围:n<=100000 Solution dp的设计见[刷题]BZOJ 3522 [Poi2014]Hotel 然后发现dp的第二维与深度有关,于是 ...
- 3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 253 Solved: 117[Submit][Status ...
- 3522: [Poi2014]Hotel( 树形dp )
枚举中点x( 即选出的三个点 a , b , c 满足 dist( x , a ) = dist( x , b ) = dist( x , c ) ) , 然后以 x 为 root 做 dfs , 显 ...
- BZOJ.4543.[POI2014]Hotel加强版(长链剖分 树形DP)
题目链接 弱化版:https://www.cnblogs.com/SovietPower/p/8663817.html. 令\(f[x][i]\)表示\(x\)的子树中深度为\(i\)的点的个数,\( ...
- bzoj 4543: [POI2014]Hotel加强版
Description 给出一棵树求三元组 \((x,y,z)\,,x<y<z\) 满足三个点两两之间距离相等,求三元组的数量 Solution 考虑暴力 \(DP\) 设 \(f[i][ ...
- ZJOI2019一轮停课刷题记录
Preface 菜鸡HL终于狗来了他的省选停课,这次的时间很长,暂定停到一试结束,不过有机会二试的话还是可以搞到4月了 这段时间的学习就变得量大而且杂了,一般以刷薄弱的知识点和补一些新的奇怪技巧为主. ...
- BZOJ3522: [Poi2014]Hotel
3522: [Poi2014]Hotel Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 195 Solved: 85[Submit][Status] ...
随机推荐
- ubuntu14.04安装jupyter notebook
1.使用pip安装Jupyter notebook: pip install jupyter notebook 2.创建Jupyter默认配置文件: jupyter notebook --genera ...
- 20155234 昝昕明 《网络对抗技术》实验一 PC平台逆向破解
实践内容: 手工修改可执行文件,改变程序执行流程,直接跳转到getShell函数. 利用foo函数的Bof漏洞,构造一个攻击输入字符串,覆盖返回地址,触发getShell函数. 注入一个自己制作的sh ...
- 解决 配置springmvc拦截所有请求后请求静态资源404的问题
<servlet-mapping> <servlet-name>spring-servlet</servlet-name> <url-pattern>/ ...
- 命令行模式和python交互模式
一.命令行模式 在Windows开始菜单选择“命令提示符”,就进入到命令行模式,它的提示符类似C:>:. 二.Python交互模式 在命令行模式下敲命令python,就看到类似如下的一堆文本输出 ...
- linux下的yum命令详细介绍
yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...
- jvm系列(九):Java GC 分析
Java GC就是JVM记录仪,书画了JVM各个分区的表演. 什么是 Java GC Java GC(Garbage Collection,垃圾收集,垃圾回收)机制,是Java与C++/C的主要区别之 ...
- SpringBoot整合EHcache学习笔记
为了提高系统的运行效率,引入缓存机制,减少数据库访问和磁盘IO.下面说明一下ehcache和SpringBoot整合配置 前言介绍 EhCache 是一个纯Java的进程内缓存框架,具有快速.精干等特 ...
- SpringBoot日记——缓存的使用
SpringBoot核心技术的东西基本上都有介绍过了,接下来,进阶点~来说说缓存吧~ 缓存这个词不少同学应该不会很陌生.而我们这里主要使用的就是Redis. 客户端第一次请求的时候是从库里拿出我们需要 ...
- 在nodejs中引进模块要经历的步骤
在nodejs中引入模块需要经历如下3个步骤 1.路径分析 2.文件定位 3.编译执行 在nodejs中模块分为两类,一类是nodejs提供的模块,称为核心模块,另一类的用户编写的模块,称为文件模块. ...
- 冒泡排序算法的C++,Java和Python实现和冒泡排序算法三种语言效率的比较
冒泡排序原理: 这一篇百度经验讲得很好,我不多说了 https://jingyan.baidu.com/article/6525d4b13f920bac7d2e9484.html 他讲的是C语言,没有 ...