【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)
题面
题解
显然强连通分量对于题目是没有任何影响的,直接缩点就好了。
那么接下来剩下的是一个\(DAG\),既然任意两点之间都有一条路径连接,在\(DAG\)上的体现就是这个玩意一定是一条链。随便\(dp\)一下就好了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define MAX 100100
#define MAXL 1000100
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
vector<int> E[MAX];
struct Line{int v,next;}e[MAXL];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int dfn[MAX],low[MAX],S[MAX],G[MAX],sz[MAX],tim,top,gr,len[MAX];
int dg[MAX],p[MAX],f[MAX],g[MAX],tot;
bool ins[MAX];
void Tarjan(int u)
{
S[++top]=u;dfn[u]=low[u]=++tim;ins[u]=true;
for(int i=h[u];i;i=e[i].next)
if(!dfn[e[i].v])
Tarjan(e[i].v),low[u]=min(low[u],low[e[i].v]);
else if(ins[e[i].v])
low[u]=min(low[u],dfn[e[i].v]);
if(dfn[u]==low[u])
{
++gr;int v;
do{v=S[top--];ins[v]=false;G[v]=gr;++sz[gr];}while(u!=v);
}
}
void Topsort()
{
queue<int> Q;
for(int i=1;i<=gr;++i)if(!dg[i])Q.push(i),E[0].push_back(i),++len[0];
while(!Q.empty())
{
int u=Q.front();Q.pop();p[++tot]=u;
for(int i=0;i<len[u];++i)
if(!--dg[E[u][i]])Q.push(E[u][i]);
}
}
int n,m,MOD;
int main()
{
n=read();m=read();MOD=read();
for(int i=1,u,v;i<=m;++i)u=read(),v=read(),Add(u,v);
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int u=1;u<=n;++u)
for(int i=h[u];i;i=e[i].next)
if(G[u]!=G[e[i].v])
E[G[u]].push_back(G[e[i].v]);
for(int i=1;i<=gr;++i)sort(E[i].begin(),E[i].end());
for(int i=1;i<=gr;++i)len[i]=unique(E[i].begin(),E[i].end())-E[i].begin();
for(int i=1;i<=gr;++i)
for(int j=0;j<len[i];++j)
++dg[E[i][j]];
Topsort();
for(int i=gr;~i;--i)
{
int u=p[i];f[u]=sz[u];g[u]=1;
for(int j=0;j<len[u];++j)
{
int v=E[u][j];
if(f[u]<sz[u]+f[v])
f[u]=sz[u]+f[v],g[u]=g[v];
else if(f[u]==sz[u]+f[v])
g[u]=(g[u]+g[v])%MOD;
}
}
printf("%d\n%d\n",f[0],g[0]);
return 0;
}
【BZOJ1093】[ZJOI2007]最大半联通子图(Tarjan,动态规划)的更多相关文章
- bzoj1093 [ZJOI2007]最大半联通子图 缩点 + 拓扑序
最大半联通子图对应缩点后的$DAG$上的最长链 复杂度$O(n + m)$ #include <cstdio> #include <cstring> #include < ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
- [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)
题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...
- Luogu P2272 [ZJOI2007]最大半连通子图(Tarjan+dp)
P2272 [ZJOI2007]最大半连通子图 题意 题目描述 一个有向图\(G=(V,E)\)称为半连通的\((Semi-Connected)\),如果满足:\(\forall u,v\in V\) ...
- [bzoj 1093][ZJOI2007]最大半联通子图(强联通缩点+DP)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1093 分析: 首先肯定是先把强联通全部缩成一个点,然后成了一个DAG 下面要知道一点: ...
- BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G ...
- bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)
Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...
- 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp
题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...
随机推荐
- Hadoop体系结构杂谈
hadoop体系结构杂谈 今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底 ...
- struts2_E_commerce_maven
这是作业的第二题:使用struts实现电子商务网站,这是基于之前的代码的,所以,主要就是修改成为struts的mvc模式. 1.开始,先把以前做的一个maven项目修改成为另一个项目(简称重命名) 重 ...
- 用pyinstaller把python代码打包成exe可执行文件
优点: 1. pyinstaller 是跨平台的可以用在linux和windows系统上 2. 操作非常简单,几个命令就搞定了,这个比py2exe容易用多了 缺点: 1. 打包后的体积过大,因为要带p ...
- 20155328 《网络攻防》 实验一:PC平台逆向破解(5)M
20155328 <网络攻防> 实验一:PC平台逆向破解(5)M 实践目标 实践对象:linux可执行文件pwn1. 正常执行时,main调用foo函数,foo函数会简单回显任何用户输入的 ...
- WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示。
原文:WPF编程,通过DoubleAnimation控制图片的透明度,将重叠的图片依次显示. 版权声明:我不生产代码,我只是代码的搬运工. https://blog.csdn.net/qq_43307 ...
- python 回溯法 子集树模板 系列 —— 10、m着色问题
问题 图的m-着色判定问题 给定无向连通图G和m种不同的颜色.用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色? 图的m-着色优化问题 若一个图最少 ...
- cocos2d-x学习记录2——CCAction动作
CCAction能够使CCNode运动起来,能够呈现出多种多样的动作.这些动作能够改变其运动方向.形状.大小.旋转等. 同时,还可利用CCCallFunc.CCCallFuncN.CCCallFunc ...
- idea 项目java版本选项位置
藏这里了 还有一个
- Spring学习(十九)----- Spring与WEB容器整合
首先可以肯定的是,加载顺序与它们在 web.xml 文件中的先后顺序无关.即不会因为 filter 写在 listener 的前面而会先加载 filter.最终得出的结论是:listener -> ...
- 初级字典树查找在 Emoji、关键字检索上的运用 Part-2
系列索引 Unicode 与 Emoji 字典树 TrieTree 与性能测试 生产实践 在有了 Unicode 和 Emoji 的知识准备后,本文进入编码环节. 我们知道 Emoji 是 Unico ...