样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n)
样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n)
正态分布的n阶中心矩参见:
http://www.doc88.com/p-334742692198.html
样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n)的更多相关文章
- 使用K-S检验一个数列是否服从正态分布、两个数列是否服从相同的分布
假设检验的基本思想: 若对总体的某个假设是真实的,那么不利于或者不能支持这一假设的事件A在一次试验中是几乎不可能发生的.如果事件A真的发生了,则有理由怀疑这一假设的真实性,从而拒绝该假设. 实质分析: ...
- 估计量|估计值|置信度|置信水平|非正态的小样本|t分布|大样本抽样分布|总体方差|
5 估计量和估计值是什么? 估计量不是估计出来的量,是用于估计的量. 估计量:用于估计总体参数的随机变量,一般为样本统计量.如样本均值.样本比例.样本方差等.例如:样本均值就是总体均值的一个估计量. ...
- 如何用minitab检测一组数据是否服从正态分布
打开Minitab之后 点击Stat>Basic Statistics> Normality Test 分析之后若 P value(P值)>0.05,说明此组数据服从正态分布
- Javascript 随机数函数 学习之二:产生服从正态分布随机数
一.为什么需要服从正态分布的随机函数 一般我们经常使用的随机数函数 Math.random() 产生的是服从均匀分布的随机数,能够模拟等概率出现的情况,例如 扔一个骰子,1到6点的概率应该相等,但现实 ...
- SAS学习笔记25 t检验(单个样本t检验、配对样本t检验、两个独立样本t检验及方差不齐时的t'检验)
根据研究设计和资料的性质有单个样本t检验.配对样本t检验.两个独立样本t检验以及在方差不齐时的t'检验 单样本t检验 单样本t检验(one-sample t-test)又称单样本均数t检验,适用于样本 ...
- VAE--就是AutoEncoder的编码输出服从正态分布
花式解释AutoEncoder与VAE 什么是自动编码器 自动编码器(AutoEncoder)最开始作为一种数据的压缩方法,其特点有: 1)跟数据相关程度很高,这意味着自动编码器只能压缩与训练数据相似 ...
- 为什么方差的分母有时是n,有时是n-1 源于总体方差和样本方差的不同
为什么样本方差(sample variance)的分母是 n-1? 样本方差计算公式里分母为n-1的目的是为了让方差的估计是无偏的.无偏的估计(unbiased estimator)比有偏估计(bia ...
- 为什么样本方差(sample variance)的分母是 n-1?
为什么样本方差(sample variance)的分母是 n-1? (補充一句哦,題主問的方差 estimator 通常用 moments 方法估計.如果用的是 ML 方法,請不要多想不是你們想的那樣 ...
- 【Math】根据置信度、样本数相关推导过程
时间长了会忘,备忘下. http://blog.csdn.net/liangzuojiayi/article/details/78044780 http://wiki.mbalib.com/wiki/ ...
随机推荐
- [Oracle]查看数据是否被移入 DataBuffer 的方法
查看数据是否被移入 DataBuffer 的方法: 例如:表名为 tabxxx, 用户为U2: SQL> grant dba to u2 identified by u2;SQL> con ...
- C# Language Specification 5.0 (翻译)第二章 词法结构
程序 C# 程序(program)由至少一个源文件(source files)组成,其正式称谓为编译单元(compilation units)[1].每个源文件都是有序的 Unicode 字符序列.源 ...
- AndroidPN环境建立
AndroidPN环境 AndroidPN实现了从服务器到android移动平台的文本消息推送.这里先简单说一下androidPN的安装过程. 下载androidpn-client-0.5.0.zip ...
- Asp.Net_Session跟Cookie的记住登陆名
最近在做ASP.NET的项目时,接触到了登陆权限模块,所有总结了一下登陆时用到的知识和方法技巧. 如图说明:实现的效果如图,由于验证码验证比较简单这里就不介绍了 首先用代码生成器生成项目,以三层为例进 ...
- 博客配置Racket代码字体
我想在博客园的文章中插入Racket代码,但是博客园的代码块和高亮都太难看了,如果能把scribble/manual的CSS文件中的Racket代码块的配置拿出来就可以有漂亮的Racket代码高亮了, ...
- 异步编程之asyncio简单介绍
引言: python由于GIL(全局锁)的存在,不能发挥多核的优势,其性能一直饱受诟病.然而在IO密集型的网络编程里,异步处理比同步处理能提升成百上千倍的效率,弥补了python性能方面的短板. as ...
- 通用shellcode
所有 win_32 程序都会加载 ntdll.dll 和 kernel32.dll 这两个最基础的动态链接库.如果想要 在 win_32 平台下定位 kernel32.dll 中的 API 地址,可以 ...
- ace -- about
Built for Code Ace is an embeddable code editor written in JavaScript. It matches the features and p ...
- 认识 Iconfont 以及什么是 .eot、.woff、.ttf、.svg
一.Iconfont 1. 概述 在前端作业中,二十年前只有页面中铺满文字就算上线产品,现如今,不加点俏皮的“图标”会让页面显得很 Low 很 Low. 图标 在写这篇文章之前,我一直以为上图中的 ...
- Day Five
站立式会议 站立式会议内容总结 442 今天:编写具体计划的界面 遇到的问题:相对布局.绝对布局理解不够深刻 明天:完成设定计划时间的功能 331 今天:添加书籍/计划按钮,添加书籍时有一个文件选择 ...