HDU3715(二分+2-SAT)
Go Deeper
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 3184 Accepted Submission(s): 1035
Problem Description
go(int dep, int n, int m)
begin
output the value of dep.
if dep < m and x[a[dep]] + x[b[dep]] != c[dep] then go(dep + 1, n, m)
end
In this code n is an integer. a, b, c and x are 4 arrays of integers. The index of array always starts from 0. Array a and b consist of non-negative integers smaller than n. Array x consists of only 0 and 1. Array c consists of only 0, 1 and 2. The lengths of array a, b and c are m while the length of array x is n. Given the elements of array a, b, and c, when we call the procedure go(0, n, m) what is the maximal possible value the procedure may output?
Input
Output
Sample Input
2 1
0 1 0
2 1
0 0 0
2 2
0 1 0
1 1 2
Sample Output
1
2
Author
Source
//2017-08-27
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <vector>
#include <iomanip>
#include <cmath> using namespace std; const int N = ;
const int M = N*N;
const double EPS = 1e-;
int head[N], rhead[N], tot, rtot;
struct Edge{
int to, next;
}edge[M], redge[M]; void init(){
tot = ;
rtot = ;
memset(head, -, sizeof(head));
memset(rhead, -, sizeof(rhead));
} void add_edge(int u, int v){
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++; redge[rtot].to = u;
redge[rtot].next = rhead[v];
rhead[v] = rtot++;
} vector<int> vs;//后序遍历顺序的顶点列表
bool vis[N];
int cmp[N];//所属强连通分量的拓扑序 //input: u 顶点
//output: vs 后序遍历顺序的顶点列表
void dfs(int u){
vis[u] = true;
for(int i = head[u]; i != -; i = edge[i].next){
int v = edge[i].to;
if(!vis[v])
dfs(v);
}
vs.push_back(u);
} //input: u 顶点编号; k 拓扑序号
//output: cmp[] 强连通分量拓扑序
void rdfs(int u, int k){
vis[u] = true;
cmp[u] = k;
for(int i = rhead[u]; i != -; i = redge[i].next){
int v = redge[i].to;
if(!vis[v])
rdfs(v, k);
}
} //Strongly Connected Component 强连通分量
//input: n 顶点个数
//output: k 强连通分量数;
int scc(int n){
memset(vis, , sizeof(vis));
vs.clear();
for(int u = ; u < n; u++)
if(!vis[u])
dfs(u);
int k = ;
memset(vis, , sizeof(vis));
for(int i = vs.size()-; i >= ; i--)
if(!vis[vs[i]])
rdfs(vs[i], k++);
return k;
} int n, m;
int a[], b[], c[]; bool check(int len){
init();
for(int i = ; i < len; i++){
if(c[i] == ){
add_edge(a[i]+n, b[i]);
add_edge(b[i]+n, a[i]);
}else if(c[i] == ){
add_edge(a[i], b[i]);
add_edge(a[i]+n, b[i]+n);
add_edge(b[i], a[i]);
add_edge(b[i]+n, a[i]+n);
}else if(c[i] == ){
add_edge(a[i], b[i]+n);
add_edge(b[i], a[i]+n);
}
}
scc(n<<);
for(int i = ; i < n; i++)
if(cmp[i] == cmp[i+n])
return false;
return true;
} int main()
{
std::ios::sync_with_stdio(false);
//freopen("inputD.txt", "r", stdin);
int T;
cin>>T;
while(T--){
cin>>n>>m;
for(int i = ; i < m; i++)
cin>>a[i]>>b[i]>>c[i];
int l = , r = m, mid, ans;
while(l <= r){
mid = (l+r)/;
if(check(mid)){
ans = mid;
l = mid+;
}else
r = mid-;
}
cout<<ans<<endl;
} return ;
}
HDU3715(二分+2-SAT)的更多相关文章
- hdu3715 二分+2sat+建图
题意: 给你一个递归公式,每多一层就多一个限制,问你最多能递归多少层. 思路: 先分析每一层的限制 x[a[i]] + x[b[i]] != c[i],这里面x[] = 0,1, ...
- hdu3715 2-sat+二分
Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...
- hdu3715 Go Deeper[二分+2-SAT]/poj2723 Get Luffy Out[二分+2-SAT]
这题转化一下题意就是给一堆形如$a_i + a_j \ne c\quad (a_i\in [0,1],c\in [0,2])$的限制,问从开头开始最多到哪条限制全是有解的. 那么,首先有可二分性,所以 ...
- hdu3715
hdu3715 题意 给出一个递归的伪代码,当 x[a[dep]] + x[b[dep]] != c[dep],就向下递归,给出a,b,c数组的值 问 dep 最大多少.其中 0 <= c[i] ...
- 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)
0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- UVALive - 3211 (2-SAT + 二分)
layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
随机推荐
- Python大黑阔—url采集+exp验证,带你批量测试
i春秋作家:大木瓜 前言: 最近几天在整理从各处收集来的各种工具包,大大小小的塞满了十几个G的硬盘,无意间发现了一个好几年前的0day.心血来潮就拿去试了一下,没想到真的还可以用,不过那些站点都已经老 ...
- 对drf的初步认识
web应用模式 1.前后端不分离 在前后端不分离的应用模式中,前端页面看到的效果都是由后端控制,由后端渲染页面或重定向,也就是后端需要控制前端的展示,前端与后端的耦合度很高. 这种应用模式比较适合纯网 ...
- linux系统坏了,进不了登陆界面怎么办?
装oracle时,命令弄错了,结果系统崩溃之后就进不去系统了,启动后光标一直在闪烁,就是不显示登陆界面. 网上查了很多,什么grub引导之类的,完全没办法恢复系统. 系统坏了倒是无所谓,主要是系统上还 ...
- salt-api return mysql返回的使用,记录操作日志
说在前面 折腾这个搞了半天,现做下记录 安装依赖(操作只在master端) yum install mysql-python or pip install mysql-python master端本地 ...
- IQueryable与IEnumerable
IEnumerable: 从服务器处取回所有数据,在客户端根据过滤条件进行过滤再返回结果. IQueryable: 从服务器处进行过滤,直接返回过滤后的结果.
- WebDriver高级应用实例(10)
10.1控制HTML5语言实现的视频播放器 目的:能够获取html5语言实现的视频播放器视频文件的地址.时长.控制进行播放暂停 被测网页的网址: http://www.w3school.com.cn/ ...
- C# 发送HTTP请求超时解决办法
request.GetResponse();超时问题的解决,和HttpWebRequest多线程性能问题,请求超时的错误, 解决办法 1.将http的request的keepAlive设置为false ...
- oracle expdp impdp 导入导出备份
数据库导入导出: 使用EXPDP和IMPDP时应该注意的事项: EXP和IMP是客户端工具程序,它们既可以在客户端使用,也可以在服务端使用. EXPDP和IMPDP是服务端的工具程序,他们只能在ORA ...
- JobScheduler调度器过程(JobSchedulerService的启动过程)
JobSchedulerService启动过程,最主要工作是从jobs.xml文件收集所有的jobs,放入到JobStore的成员变量mJobSet,转成jobinfo. JobScheduler服务 ...
- 【JAVA】序列化
好处有2: 实现了数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里). 利用序列化实现远程通信,即在网络上传送对象的字节序列. 序列化ID的作用: 简单来说,Java的序列化机制 ...