论文信息

论文标题:Rumor Detection on Social Media with Event Augmentations
论文作者:Zhenyu He, Ce Li, Fan Zhou, Yi Yang
论文来源:2021,SIGIR
论文地址:download
论文代码:download

1 Introduction

  现有的深度学习方法取得了巨大的成功,但是这些方法需要大量可靠的标记数据集来训练,这是耗时和数据低效的。为此,本文提出了 RDEA ,通过事件增强在社交媒体上的谣言检测(RDEA),该方案创新地集成了三种增强策略,通过修改回复属性和事件结构,提取有意义的谣言传播模式,并学习用户参与的内在表示。

  贡献:

    • 涉及了三种可解释的数据增强策略,这在谣言时间图数据中没有得到充分的探索;
    • 在谣言数据集中使用对比自监督的方法进行预训练;
    • REDA 远高于其他监督学习方法;

2 Methodology

  总体框架如下:

  

  主要包括三个模块:

    • event graph data augmentation
    • contrastive pre-training
    • model fne-tuning

2.1 Event Augmentation

  谣言事件中存在两种用户:

    • malicious users
    • naive users

  malicious users 故意传播虚假信息,nvaive users 无意中帮助了 malicious users 传播虚假信息,所以 mask node 是可行的。

  给定除 root node 的节点特征矩阵 $E^{-r} \in \mathbb{R}^{(|\mathcal{V}|-1) \times d}$,以及一个 mask rate $p_{m}$,mask 后的节点特征矩阵为:

    $E_{\text {mask }}^{-r}=\mathrm{M} \odot E^{-r} $

  其中,$M \in\{0,1\}^{(|\mathcal{V}|-1) \times d}$ 代表着 mask matrix,随机删除 $ (|\mathcal{V}|-1) \times p_{m}$ 行节点特征矩阵。

2.2 Subgraph

  用户在早期阶段通常是支持真实谣言的,所以,在模型训练时,如果过多的访问谣言事件的整个生命周期,将阻碍早期谣言检测的准确性,所以本文采取随机游走生成谣言事件的子图 $G_{i_sub}$。

2.3 Edge dropping

  形式上,给定一个邻接矩阵 $A$ 和 $N_{e}$ 条边和丢弃率 $p_{d}$,应用 DropEdge 后的邻接矩阵 $A_{d r o p}$,其计算方法如下:

    $A_{d r o p}=A-A^{\prime}$

  其中,$A^{\prime}$ 是随机采样 $N_{e} \times p_{d} $ 条边的邻接矩阵。

2.2 Contrastive Pre-training

  在本节将介绍如何通过在输入事件和增强事件之间的对比预训练来获得互信息。

  形式上,对于 node $j$ 和 event graph $G$,self-supervised learning 过程如下:

    $\begin{array}{l}h_{j}^{(k)} &=&\operatorname{GCL}\left(h_{j}^{(k-1)}\right) \\h^{j} &=&\operatorname{CONCAT}\left(\left\{h_{j}^{(k)}\right\}_{k=1}^{K}\right)\\H(G) &=&\operatorname{READOUT}\left(\left\{h^{j}\right\}_{j=1}^{|\mathcal{V}|}\right)\end{array}$

  其中,$h_{j}^{(k)}$ 是节点在第 $k$ 层的特征向量。GCL 是 graph convolutional encoder ,$h^{j}$ 是通过将 GCL 所有层的特征向量汇总为一个特征向量,该特征向量捕获以每个节点为中心的不同尺度信息,$H(G)$ 是应用 READOUT 函数的给定事件图的全局表示。本文并选择 GIN 作为 GCL 和 mean 作为 READOUT 函数 。对比预训练的目标是使谣言传播图数据集上的互信息(MI)最大化,其计算方法为:

    ${\large \begin{aligned}I_{\psi}\left(h^{j}(G) ; H(G)\right):=& \mathbb{E}\left[-\operatorname{sp}\left(-T_{\psi}\left(\vec{h}^{j}\left(G_{i}^{\text {pos }}\right), H\left(G_{i}\right)\right)\right)\right] \\&-\mathbb{E}\left[\operatorname{sp}\left(T_{\psi}\left(\vec{h}^{j}\left(G_{i}^{n e g}\right), H\left(G_{i}\right)\right)\right)\right]\end{aligned}} $

  其中,$I_{\psi}$ 为互信息估计器,$T_{\psi}$ 为鉴别器(discriminator),$G_{i}$ 是输入 event 的 graph,$G_{i}^{\text {pos }}$ 是 $G_{i}$ 的 positive sample,$G_{i}^{\text {neg }}$ 是 $G_{i}$ 的负样本,$s p(z)=\log \left(1+e^{z}\right)$ 是 softplus function。对于正样本,可以是 $G_{i}\left(E_{\text {mask }}^{-r}\right)$,$G_{i_{-} s u b$,$G_{i}\left(A_{d r o p}\right)$,负样本是 一个 batch 中其他 event graph 的局部表示。

  在对 event graph 进行对比预训练后,我们得到了 input event graph $G_{i}$ 的预训练的向量 $H\left(G_{i}\right)$。然后,对于一个 event $C_{i}=\left[r_{i}, x_{1}^{i}, x_{2}^{i}, \cdots, x_{\left|\mathcal{V}_{i}\right|-1}^{i}, G_{i}\right]$,通过平均所有相关的回复帖子和源帖子的原始特征 $o_{i}=\frac{1}{n_{i}}\left(\sum_{j=1}^{\left|\mathcal{V}_{i}\right|-1} x_{j}^{i}+r_{i}\right)$,我们得到了文本图向量 $o_{i}$。为了强调 source post,将 contrastive vector、textual graph vector 和source post features 合并为:

    $\mathbf{S}_{i}=\mathbf{C O N C A T}\left(H\left(G_{i}\right), o_{i}, r_{i}\right)$

2.3 Fine tuning

  预训练使用了文本特征,得到了预训练的 event representation,并包含了原始特征和 source post 信息,在 fine-tune 阶段,使用预训练的参数初始化参数,并使用标签训练模型:

  将上述生成的 $s_{i}$ 通过全连接层进行分类:

    $\hat{\mathbf{y}}_{i}=\operatorname{softmax}\left(F C\left(\mathbf{S}_{i}\right)\right)$

  最后采用交叉熵损失:

    $\mathcal{L}(Y, \hat{Y})=\sum_{i=1}^{|C|} \mathbf{y}_{i} \log \hat{\mathbf{y}}_{i}+\lambda\|\Theta\|_{2}^{2}$

  其中,$\|\Theta\|_{2}^{2}$ 代表 $L_{2}$ 正则化,$\Theta$ 代表模型参数,$\lambda$ 是 trade-off 系数。

3 Experiments

3.1 Baselines
    • DTC [3]: A rumor detection approach applying decision tree that utilizes tweet features to obtain information credibility.
    • SVM-TS [10]: A linear SVM-based time-series model that leverages handcrafted features to make predictions.
    • RvNN [11]: A recursive tree-structured model with GRU units that learn rumor representations via the tree structure.
    • PPC_RNN+CNN [8]: A rumor detection model combining RNN and CNN for early-stage rumor detection, which learns the rumor representations by modeling user and source tweets.
    • Bi-GCN [2]: using directed GCN, which learns the rumor representations through Bi-directional propagation structure.

3.2 Performance Comparison

  

3.3 Ablation study

  

  -R represent our model without root feature enhancement
  -T represent our model without textual graph
  -A represent our model without event augmentation
  -M represent our model without mutual information

3.4 Limited labeled data

  Figure 3 显示了当标签分数变化时的性能:

  

  我们观察到,RDEA 对这两个数据集都比 Bi-GCN 更具有标签敏感性。此外,标签越少,改进幅度越大,说明RDEA的鲁棒性和数据有效性。

3.5 Early Rumor Detection

  

谣言检测(RDEA)《Rumor Detection on Social Media with Event Augmentations》的更多相关文章

  1. 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》

    论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...

  2. 谣言检测(PSIN)——《Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media》

    论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论 ...

  3. 谣言检测——(GCAN)《GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media》

    论文信息 论文标题:GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Medi ...

  4. 谣言检测(DUCK)《DUCK: Rumour Detection on Social Media by Modelling User and Comment Propagation Networks》

    论文信息 论文标题:DUCK: Rumour Detection on Social Media by Modelling User and Comment Propagation Networks论 ...

  5. 谣言检测()《Rumor Detection with Self-supervised Learning on Texts and Social Graph》

    论文信息 论文标题:Rumor Detection with Self-supervised Learning on Texts and Social Graph论文作者:Yuan Gao, Xian ...

  6. 谣言检测——《MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection》

    论文信息 论文标题:MFAN: Multi-modal Feature-enhanced Attention Networks for Rumor Detection论文作者:Jiaqi Zheng, ...

  7. 谣言检测(PLAN)——《Interpretable Rumor Detection in Microblogs by Attending to User Interactions》

    论文信息 论文标题:Interpretable Rumor Detection in Microblogs by Attending to User Interactions论文作者:Ling Min ...

  8. 谣言检测()《Data Fusion Oriented Graph Convolution Network Model for Rumor Detection》

    论文信息 论文标题:Data Fusion Oriented Graph Convolution Network Model for Rumor Detection论文作者:Erxue Min, Yu ...

  9. 谣言检测——(PSA)《Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks》

    论文信息 论文标题:Probing Spurious Correlations in Popular Event-Based Rumor Detection Benchmarks论文作者:Jiayin ...

随机推荐

  1. 选择语句-IF和标准if-else语句以及if-else语句的扩展

    第二章 判断语句 2.1 判断语句1--if if语句的第一种格式:if if(关系表达式){ 语句体; } 执行流程 首先判断关系表达式看起结果是true还是false 如果是true就执行与具体 ...

  2. 日期字符串转为java.sql.Date

    日期字符串转为java.sql.Date类型 问题引出:在将一个日期字符串通过sql语句,插入到数据表的日期字段(字段类型是DATE),时遇到一个问题,如何将一个日期字符串转成java.sql.Dat ...

  3. 云图说丨初识华为云微服务引擎CSE

    摘要:微服务引擎(Cloud Service Engine,CSE),是用于微服务应用的云中间件,为用户提供注册发现.服务治理.配置管理等高性能和高韧性的企业级云服务能力 本文分享自华为云社区< ...

  4. 如何用WebGPU流畅渲染千万级2D物体:基于光追管线

    大家好~我们已经实现了百万级2D物体的流畅渲染,不过是基于计算管线实现的.本文在它的基础上,改为基于光追管线实现,主要进行了CPU和GPU端内存的优化,成功地将渲染的2D物体数量由4百万提高到了2千万 ...

  5. 多环境配置 - SpringBoot 2.7.2 实战基础

    优雅哥 SpringBoot 2.7.2 实战基础 - 06 -多环境配置 在一个项目的开发过程中,通常伴随着多套环境:本地环境 local.开发环境 dev.集成测试环境 test.用户接受测试环境 ...

  6. CF208E Blood Cousins(DSU,倍增)

    倍增求出祖先,\(\text{DSU}\)统计 本来想用树剖求\(K\)祖,来条链复杂度就假了 #include <cstring> #include <cstdio> #in ...

  7. 想学渗透测试,应该考CISP-PTE还是NISP-PT?|网安伴nisp和cisp

    其实两者都可,但要看考生的实际需求! 为什么说两者都可以? 两个证书都由中国信息安全测评中心颁发,CISP-PTE全称国家注册渗透测试工程师,NISP-PT全称国家信息安全水平考试-渗透测试工程师专项 ...

  8. 算法模板:dijkstra

    #include<iostream> #include<algorithm> #include<cstring> #include<string> #i ...

  9. 学习ASP.NET Core Blazor编程系列一——综述

    一.NET 6概述 .NET 6 是微软统一.Net Core与.Net Framework 两大框架的第二个版本,微软在 .NET 5 中开始进行这两大框架的统一之路. .NET 6 将作为长期支持 ...

  10. 【java】学习路径28-Java集合类知识点总结+练习题(去重)

    Java集合 1.集合和数组的区别 (1)  集合可以改变长度 (2)  数组长度不可变 2.ArrayList (1)  add addAll (2)  remove removeAll (3)   ...