题目

观察当k固定时答案是什么。先假设每个节点对答案的贡献都是\(\binom{n}{k}\),然后再减掉某个点没有贡献的选点方案数。对于一个节点i,它没有贡献的方案数显然就是所有k个节点都选在i连出去的某一个子树内的方案数。枚举节点i,把i连出去的每一个子树的size都加入一个序列c,则答案为\(\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{k}\)。

考虑\(k=1\cdots n\)的情况:

\(ans_k=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{k}=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\binom{c_i}{c_i-k}=\binom{n}{k}\cdot n-\sum_{i=0}^{|c|-1}\frac{c_i!}{k!(c_i-k)!}\)

\(-ans_k k!+\binom nk\cdot n\cdot k!=\sum_{i=0}^{|c|-1}\frac{c_i!}{(c_i-k)!}\)

统计每种\(c_i\)的出现次数后,右边就变成了一个减法卷积的形式,一遍NTT即可。需要注意题目中的模数的原根是5.时间复杂度\(O(nlogn)\)。

点击查看代码
#include <bits/stdc++.h>

#define rep(i,n) for(int i=0;i<n;++i)
#define repn(i,n) for(int i=1;i<=n;++i)
#define LL long long
#define pii pair <LL,LL>
#define fi first
#define se second
#define mpr make_pair
#define pb push_back using namespace std; const LL MOD=924844033; LL qpow(LL x,LL a)
{
LL res=x,ret=1;
while(a>0)
{
if((a&1)==1) ret=ret*res%MOD;
a>>=1;
res=res*res%MOD;
}
return ret;
} namespace poly
{
vector <LL> rev;
void ntt(vector <LL> &a,LL G)
{
LL nn=a.size(),gn,g,x,y;vector <LL> tmp=a;
rep(i,nn) a[i]=tmp[rev[i]];
for(int len=1;len<nn;len<<=1)
{
gn=qpow(G,(MOD-1)/(len<<1));
for(int i=0;i<nn;i+=(len<<1))
{
g=1;
for(int j=i;j<i+len;++j,(g*=gn)%=MOD)
{
x=a[j];y=a[j+len]*g%MOD;
a[j]=(x+y)%MOD;a[j+len]=(x-y+MOD)%MOD;
}
}
}
}
vector <LL> convolution(vector <LL> a,vector <LL> b,LL G)
{
LL nn=1,bt=0,sv=a.size()+b.size()-1;while(nn<a.size()+b.size()-1) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(b.size()<nn) b.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(b,G);
rep(i,nn) (a[i]*=b[i])%=MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> inverse(vector <LL> a,LL G)
{
if(a.size()==1) return vector <LL>{qpow(a[0],MOD-2)};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=inverse(aa,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
ntt(a,G);ntt(bb,G);
rep(i,nn) a[i]=(2LL-a[i]*bb[i]%MOD+MOD)*bb[i]%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
vector <LL> sqrt1(vector <LL> a,LL G)//常数项为1
{
if(a.size()==1) return vector <LL>{1};
vector <LL> aa=a;while(aa.size()>(a.size()+1)>>1) aa.pop_back();
vector <LL> bb=sqrt1(aa,G);while(bb.size()<a.size()) bb.pb(0);
vector <LL> bbb=inverse(bb,G);
LL nn=1,bt=0,sv=a.size();while(nn<a.size()*2) nn<<=1LL,++bt;
while(a.size()<nn) a.pb(0);while(bb.size()<nn) bb.pb(0);while(bbb.size()<nn) bbb.pb(0);
rev.clear();
rep(i,nn)
{
rev.pb(0);
rev[i]=(rev[i>>1]>>1)|((i&1)<<(bt-1));
}
LL mul=qpow(2,MOD-2);
ntt(a,G);ntt(bb,G);ntt(bbb,G);
rep(i,nn) a[i]=mul*(bb[i]+bbb[i]*a[i]%MOD)%MOD;
ntt(a,qpow(G,MOD-2));
while(a.size()>sv) a.pop_back();
LL inv=qpow(nn,MOD-2);
rep(i,a.size()) (a[i]*=inv)%=MOD;
return a;
}
} LL n,sz[200010],fac[200010],inv[200010],ans[200010];
vector <LL> g[200010],A,B,C; LL CC(LL nn,LL mm){return fac[nn]*inv[mm]%MOD*inv[nn-mm]%MOD;} void dfs(LL pos,LL par)
{
sz[pos]=1;
rep(i,g[pos].size()) if(g[pos][i]!=par)
{
dfs(g[pos][i],pos);
sz[pos]+=sz[g[pos][i]];
++A[sz[g[pos][i]]];
}
if(pos!=1) ++A[n-sz[pos]];
} int main()
{
fac[0]=1;repn(i,200005) fac[i]=fac[i-1]*(LL)i%MOD;
rep(i,200003) inv[i]=qpow(fac[i],MOD-2);
cin>>n;
LL x,y;
rep(i,n-1)
{
scanf("%lld%lld",&x,&y);
g[x].pb(y);g[y].pb(x);
}
rep(i,n) A.pb(0);
dfs(1,0);
rep(i,n) (A[i]*=fac[i])%=MOD;
rep(i,n) B.pb(inv[i]);
reverse(B.begin(),B.end());
C=poly::convolution(A,B,5);
repn(i,n)
{
ans[i]=CC(n,i)*n%MOD;
(ans[i]+=MOD-(i+n-1>=C.size() ? 0LL:C[i+n-1])*inv[i]%MOD)%=MOD;
}
repn(i,n) printf("%lld\n",ans[i]);
return 0;
}

[题解] Atcoder AGC 005 F Many Easy Problems NTT,组合数学的更多相关文章

  1. AtcoderGrandContest 005 F. Many Easy Problems

    $ >AtcoderGrandContest \space 005 F.  Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...

  2. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  3. 【AGC 005F】Many Easy Problems

    Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...

  4. AtCoder Grand Contest 005F - Many Easy Problems

    $n \leq 200000$的树,从树上选$k$个点的一个方案会对$Ans_k$产生大小为“最小的包括这$k$个点的连通块大小”的贡献.求每个$Ans_k$.膜924844033. 看每个点对$An ...

  5. 【AGC005F】Many Easy Problems (NTT)

    Description ​ 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...

  6. 【AtCoder】AGC005F - Many Easy Problems

    题解 我们把一个点的贡献转化为一条边的贡献,因为边的数量是点的数量-1,最后再加上选点方案数\(\binom{n}{k}\)即可 一条边的贡献是\(\binom{n}{k} - \binom{a}{k ...

  7. 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花

    题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...

  8. 【CodeForces】913 D. Too Easy Problems

    [题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...

  9. [atcoder contest 010] F - Tree Game

    [atcoder contest 010] F - Tree Game Time limit : 2sec / Memory limit : 256MB Score : 1600 points Pro ...

随机推荐

  1. Linux 启动流程及相关知识

    基础知识 linux系统的组成 内核(kerner) 根文件系统(rootfs) 内核提供操作系统的功能,根文件系统包含常用的一些工具,这些工具.这些工具的运行离不开glibc库文件. 程序:二进制程 ...

  2. 基于infiniband(IB)网的MVAPICH2安装

    一.下载安装包 下载链接:http://mvapich.cse.ohio-state.edu/downloads/  二.解压编译安装 mkdir /home/xujb/mvapich2 tar -x ...

  3. 丽泽普及2022交流赛day16 社论

    这场比较平凡吧 . 省流: http://zhengruioi.com/contest/1087 目录 目录 A. Gene 题面 题解 算法一(正解) 算法二 B. Fight 题面 题解 算法一( ...

  4. SpringCloud微服务实战——搭建企业级开发框架(四十五):【微服务监控告警实现方式二】使用Actuator(Micrometer)+Prometheus+Grafana实现完整的微服务监控

      无论是使用SpringBootAdmin还是使用Prometheus+Grafana都离不开SpringBoot提供的核心组件Actuator.提到Actuator,又不得不提Micrometer ...

  5. Kafka与Spark案例实践

    1.概述 Kafka系统的灵活多变,让它拥有丰富的拓展性,可以与第三方套件很方便的对接.例如,实时计算引擎Spark.接下来通过一个完整案例,运用Kafka和Spark来合理完成. 2.内容 2.1 ...

  6. C#里如何简单的校验时间格式

    前言: 晚上打算睡觉的时候,群里反馈订单接收失败,开工排查问题,日志显示验签失败,发现一个蛮有意思的BUG,总算有了一个写作的素材 场景描述 本次的场景属于比较常见的收单API,对第三方的订单进行签名 ...

  7. springboot整合xxl-job分布式定时任务【图文完整版】

    一.前言 定时任务有很多种,有一些大的框架也有一些简单的实现. 比如常见的: JDK的Timer和TimerTask Quartz异步任务调度框架 分布式定时任务XXL-JOB Spring Task ...

  8. Excel 统计函数(三):AVERAGE 和 AVERAGEA

    AVERAGE 只能计算纯数值,如果引用的单元格是非数值,不会被计入总数:AVERAGEA 可以计算逻辑值.代表数字的文本等. 假如下列有一个表格,分别使用两种算术评价函数计算平均值. [过程]AVE ...

  9. 套接字传输(TCP简单使用)

  10. 试用 ModVB(一):安装教程+使用 JSON 常量和 JSON 模式匹配

    前排提醒:阅读此文章并充分尝试 ModVB 的新语法需要较长的时间.对于程序员而言,如果你工作时不用 VB,则最好避免在上班时间看,以免被领导认为你在长时间摸鱼. 什么是 ModVB ModVB 是一 ...