这玩意解决的是把同余方程组合并的问题。

CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $

\[R_im_i = 1, R_im_j = 0
\]

有了思路后这玩意随便构造一下就出来了,式子里面出现了一些奇怪的逆元,所以要求模数互质

现在考虑扩展CRT,模数不互质了

本质思路是合并两个同余方程组

发现同余条件等价于\(x=k_1m_1+a_1=k_2m_2+a_2\)

怎么求出其中的一个\(k\)呢?其实也就是\(k_1m_1-k_2m_2=a_2-a_1\)

扩展欧几里得即可

Code

#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
inline LL read() {
LL res = 0, flag = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') flag = 1;
for(; isdigit(ch); ch = getchar()) res = (res << 1) + (res << 3) + (ch ^ 48);
if(flag) res = ~res + 1;
return res;
}
inline LL gcd(LL x, LL y) {return y ? gcd(y, x % y) : x;}
inline void exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) x = 1, y = 0;
else exgcd(b, a % b, y, x), y -= a / b * x;
}
LL n, a, m, A, M;
int main() {
n = read(), m = read(), a = read();
for(int i = 2; i <= n; ++i) {
M = read(), A = read();
LL d = gcd(m, M), t = A - a, x, y, mod;
if(t % d) return 0;
exgcd(m, M, x, y);
x = t / d * x % (M / d);
if(x < 0) x += M / d;
mod = m / d * M;
a = (x * m + a) % mod;
if(a < 0) a += mod;
m = mod;
}
printf("%lld\n",a);
}

CRT & EXCRT 学习笔记的更多相关文章

  1. CRT&EXCRT学习笔记

    非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...

  2. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  3. CRT和EXCRT学习笔记

    蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] ...

  4. crt,excrt学习总结

    \(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: ...

  5. 「中国剩余定理CRT」学习笔记

    设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...

  6. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  7. Linux学习笔记(7)CRT实现windows与linux的文件上传下载

    Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上 ...

  8. [笔记] CRT & exCRT

    [笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...

  9. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

随机推荐

  1. linux常用命令和快捷键收集

    find / -name php #查找根目录下所有包含 php 字符的文件和目录 find / -ctime 1 #查找最近一天下载的文件和目录 yum install lrzsz #安装上传下载组 ...

  2. Jmix- 业务系统高效开发的新方式

    企业在数字化转型的过程中,都面临将现有的业务流程进行"软件化"的过程.然而,在我们的印象中,通常会觉得针对业务系统的软件开发不是特别高效.这背后有很多原因,从开发角度看,有一个主要 ...

  3. Odoo 如何下载指定版本源码 && .cfg配置参数

    # 我们使用应用市场上的模块的时候,经常会碰到模块只兼容特定版本,要将模块兼容到自己版本来的时候,就需要下载它原兼容odoo的版本运行. # 这里的-b后面加的11.0就是它的版本.在git中也就是分 ...

  4. 在Ubuntu下编译安装GreatSQL

    在Ubuntu下编译安装GreatSQL 本次介绍如何利用Docker构建Ubuntu环境,并将GreatSQL源码编译成二进制文件. 1.准备工作 先创建本次Docker的workdir为 /dat ...

  5. GreatSQL重磅特性,InnoDB并行并行查询优化测试

    欢迎来到 GreatSQL社区分享的MySQL技术文章,如有疑问或想学习的内容,可以在下方评论区留言,看到后会进行解答 GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 1 ...

  6. 关于mybatis-plus出现Not Found TableInfoCache. 的解决方法

    查看自己的pom里面是不是导入了多个mybatis相关,若是的话就全部删去,然后添加如下代码段即可 <dependency> <groupId>com.baomidou< ...

  7. LuoguP5022 旅行 (割点,基环树)

    // luogu-judger-enable-o2 #include <cstdio> //#include <iostream> #include <cstring&g ...

  8. BZOJ3894/LuoguP4313 文理分科 (最小割)

    #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> ...

  9. 使springAOP生效不一定要加@EnableAspectJAutoProxy注解

    在上篇文章<springAOP和AspectJ有关系吗?如何使用springAOP面向切面编程>中遗留了一个问题,那就是在springboot中使用springAOP需要加@EnableA ...

  10. 硬件IIC驱动原理

    1.IIC物理层 IIC通信属于同步半双工通信,IIC总线由两根信号线组成.一根是数据线SDA,一根是时钟线SCL,时钟线只能由主机发送给从机,数据线可以双向进行通信,总线上可挂载多个设备,挂载数量受 ...