这玩意解决的是把同余方程组合并的问题。

CRT的核心思想和拉格朗日插值差不多,就是构造一组\(R_i\)使得$\forall i,j(i \neq j) $

\[R_im_i = 1, R_im_j = 0
\]

有了思路后这玩意随便构造一下就出来了,式子里面出现了一些奇怪的逆元,所以要求模数互质

现在考虑扩展CRT,模数不互质了

本质思路是合并两个同余方程组

发现同余条件等价于\(x=k_1m_1+a_1=k_2m_2+a_2\)

怎么求出其中的一个\(k\)呢?其实也就是\(k_1m_1-k_2m_2=a_2-a_1\)

扩展欧几里得即可

Code

#include <cstdio>
#include <iostream>
#define LL long long
using namespace std;
inline LL read() {
LL res = 0, flag = 0; char ch = getchar();
for(; !isdigit(ch); ch = getchar()) if(ch == '-') flag = 1;
for(; isdigit(ch); ch = getchar()) res = (res << 1) + (res << 3) + (ch ^ 48);
if(flag) res = ~res + 1;
return res;
}
inline LL gcd(LL x, LL y) {return y ? gcd(y, x % y) : x;}
inline void exgcd(LL a, LL b, LL &x, LL &y) {
if(!b) x = 1, y = 0;
else exgcd(b, a % b, y, x), y -= a / b * x;
}
LL n, a, m, A, M;
int main() {
n = read(), m = read(), a = read();
for(int i = 2; i <= n; ++i) {
M = read(), A = read();
LL d = gcd(m, M), t = A - a, x, y, mod;
if(t % d) return 0;
exgcd(m, M, x, y);
x = t / d * x % (M / d);
if(x < 0) x += M / d;
mod = m / d * M;
a = (x * m + a) % mod;
if(a < 0) a += mod;
m = mod;
}
printf("%lld\n",a);
}

CRT & EXCRT 学习笔记的更多相关文章

  1. CRT&EXCRT学习笔记

    非扩展 用于求解线性同余方程组 ,其中模数两两互质 . 先来看一看两个显然的定理: 1.若 x \(\equiv\) 0 (mod p) 且 y \(\equiv\) 0 (mod p) ,则有 x+ ...

  2. 扩展中国剩余定理 exCRT 学习笔记

    前言 由于 \(\{\mathrm{CRT}\}\subseteq\{\mathrm{exCRT}\}\),而且 CRT 又太抽象了,所以直接学 exCRT 了. 摘自 huyufeifei 博客 这 ...

  3. CRT和EXCRT学习笔记

    蒟蒻maomao终于学会\(CRT\)啦!发一篇博客纪念一下(还有防止忘掉) \(CRT\)要解决的是这样一个问题: \[x≡a_1​(mod m_1​)\] \[x≡a_2​(mod m_2​)\] ...

  4. crt,excrt学习总结

    \(crt,Chinese\ Remainder\ Theorem\) 概述 前置技能:同余基础性质,\(exgcd\). \(crt\),中国剩余定理.用于解决模数互质的线性同余方程组.大概长这样: ...

  5. 「中国剩余定理CRT」学习笔记

    设正整数$m_1, m_2, ... , m_r$两两互素,对于同余方程组 $x ≡ a_1 \ (mod \ m_1)$ $x ≡ a_2 \ (mod \ m_2)$ $...$ $x ≡ a_r ...

  6. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  7. Linux学习笔记(7)CRT实现windows与linux的文件上传下载

    Linux学习笔记(7)CRT实现windows与linux的文件上传下载 按下Alt + p 进入SFTP模式,或者右击选项卡进入 命令介绍 help 显示该FTP提供所有的命令 lcd 改变本地上 ...

  8. [笔记] CRT & exCRT

    [笔记] CRT & exCRT 构造法 求多组\(x \equiv r_i (\bmod d_i)\)的解,\(d_i\)互质 余数\((r_i = remainder)\),除数\((d_ ...

  9. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

随机推荐

  1. 快速新建并配置一个eslint+prettier+husky+commitlint+vue3+vite+ts+pnpm的项目

    前置准备 一台电脑 vscode pnpm vscode插件:ESLint v2.2.6及以上 vscode插件:Prettier - Code formatter v9.5.0及以上 vscode插 ...

  2. 协程 && 异步例子

    # 异步redis # 在使用python代码操作redis的时候,连接.操作.断开都是网络IO. # 安装aioredis模块: pip install aioredis==1.3.1 # 例: 该 ...

  3. 基于图像识别框架Airtest的Windows项目自动化测试实践

    写在前面 上一篇分享了<基于Sikuli GUI图像识别框架的PC客户端自动化测试实践>,但sikuli看起来怎么都像是上个世纪的界面风格,且功能过于简陋.而同样基于图像识别框架的Airt ...

  4. SpringBoot的创建和特性

    一.SpringBoot的特点 创建独立的Spring应用程序 直接嵌入Tomcat.Jetty或Undertow(无需部署WAR文件) 提供自以为是的"starter"依赖项,以 ...

  5. Bellman-Ford算法与SPFA算法详解

    PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...

  6. Javaweb06-JDBC

    1.jdbc.properties配置文件 jdbc.properties driverClass=com.mysql.jdbc.Driver jdbcUrl=jdbc:mysql://localho ...

  7. Luogu2343 宝石管理系统(平衡树)

    平衡树维护总第K大:插入 #include <iostream> #include <cstdio> #include <cstring> #include < ...

  8. Taurus.MVC 微服务框架 入门开发教程:项目集成:1、服务端:注册中心、网关(提供可运行程序下载)。

    系列目录: 本系列分为项目集成.项目部署.架构演进三个方向,后续会根据情况调整文章目录. 本系列第一篇:Taurus.MVC V3.0.3 微服务开源框架发布:让.NET 架构在大并发的演进过程更简单 ...

  9. 用GitHub Actions自动部署Hexo

    什么是 GitHub Actions ? GitHub Actions 是一个 CI/CD(持续集成/持续部署)工具,GitHub 于 2018 年 10 月推出,正式版于 2019 年 11 月正式 ...

  10. CF1368G Shifting Dominoes (线段树)

    题面 有一个 n × m n\times m n×m 的棋盘,被 1 × 2 1\times 2 1×2 的骨牌覆盖,保证 2 ∣ n × m 2|n\times m 2∣n×m. 现在你需要执行以下 ...