\(T1\)约定

比较水的\(dp\)题

上午想到了用区间\(dp\)求解,复杂度\(O(n^5),\)貌似没开\(long\ long\)就爆掉了

正解还是比较好想的,直接枚举从何时互不影响然后转移即可,复杂度\(O(n^3)\)

#include<bits/stdc++.h>
#define int long long
#define MAXN 405
using namespace std;
int ord[MAXN][MAXN],dp[MAXN][MAXN],l[MAXN][MAXN],r[MAXN][MAXN],a[MAXN],n;
int Dis(int x,int y)
{
if(x>y) swap(x,y);
return a[y]-a[x];
}
int Val(int x,int y)
{
return Dis(x,y)*floor(sqrt(Dis(x,y)));
}
signed main()
{
scanf("%lld",&n);
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
}
for(int i=1;i<=n;i++)
{
vector<pair<int,int> >tmp;
for(int j=1;j<=n;j++)
{
tmp.push_back(make_pair(Val(i,j),j));
}
sort(tmp.begin(),tmp.end());
for(int j=0;j<n;j++)
{
ord[i][j]=tmp[j].second;
}
}
memset(l,0x3f,sizeof(l));
memset(r,0x3f,sizeof(r));
memset(dp,0x3f,sizeof(dp));
for(int i=0;i<=n;i++)
{
l[1][i]=r[n][i]=0;//l,r表示poz走到1,n的代价
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<n;j++)
{
for(int ls=1;ls<i;ls++)
{
l[i][j]=min(l[i][j],l[ls][j-1]+Val(i,ls));
}
}
}
for(int i=n-1;i>=1;i--)
{
for(int j=1;j<n;j++)
{
for(int ls=i+1;ls<=n;ls++)
{
r[i][j]=min(r[i][j],r[ls][j-1]+Val(i,ls));
}
}
}
for(int i=1;i<n;i++)
{
for(int st=1;st<=n;st++)
{
int L=st,R=st;
for(int nxt=1;nxt<n;nxt++)
{
int now=ord[st][nxt];
L=min(L,now); R=max(R,now);
dp[st][i]=min(dp[st][i],Val(st,now)+l[L][i-1]+r[R][i-1]);
dp[st][i]=min(dp[st][i],Val(st,now)+dp[now][i-1]);
}
}
}
for(int st=1;st<=n;st++)
{
for(int i=1;i<n;i++)
{
cout<<dp[st][i]<<" ";
}
cout<<"\n";
}
}

\(T2\ because\)

首先\(sto\)谭哥\(orz\)

运用高中物理知识

我们设我们直线向量为\(Base=(x_1,x_2,x_3...)\)

我们要求的式子是

\(\sum |vec_i|^2-(vec_i*Base)^2\)

\(=\sum |vec_i|^2-\sum (vec_i*Base)^2\)

最后的形式大概是一个高维函数的形式,我们每次随机一个初始点,我们对这个位置\(Seek\ partial\ derivatives\),采用\(Gradient\ descent\ method\)进行\(1000\)次\(iterate\)即可保证精度误低于\(1\times 10^{-9}\)

//sto 梯度下降+偏导 tql
#include<bits/stdc++.h>
#define MAXN 1005
#define MAXT 1000
#define MAXD 10
using namespace std;
int n,d,st[MAXN][MAXD];
double poi[MAXD],Mid2[MAXD],Mid1[MAXD],vec_x[MAXN];
int main(){
scanf("%d%d",&n,&d);
for(int i=1;i<=n;i++)
{
for(int j=0;j<d;j++)
{
scanf("%d",&st[i][j]);//输入每个向量
}
}
default_random_engine e(time(0));
uniform_real_distribution<double> u(-1,1);
for(int i=0;i<d;i++)
{
poi[i]=u(e);
}
double T=1.0;
for(int t=0;t<MAXT;t++)
{
memset(vec_x,0,sizeof(vec_x));
for(int i=1;i<=n;i++)
{
for(int j=0;j<d;j++)
{
vec_x[i]+=poi[j]*st[i][j];
//计算每个与直线向量的点乘
}
}
for(int i=0;i<d;i++)
{
double res1=0,res2=0;
//枚举维度
for(int j=1;j<=n;j++)//枚举向量
{
//在一个维度上的导,把其他维度看成常数,对这个维度求导
//这个维度的偏导,发现把平方拆一下就是这个式子了
res1+=2*st[j][i]*vec_x[j];
res2+=vec_x[j]*vec_x[j];
}
Mid2[i]=res1+res2*2*poi[i];//这个就是每个维度的在这个位置的偏导
}
for(int i=0;i<d;i++)
{
Mid1[i]=0.1*Mid1[i]+T*Mid2[i];
//这个就是那个nb的梯度下降法,移动的位置就是
//在原来的基础上在加一点
}
for(int i=0;i<d;i++)
{
poi[i]+=Mid1[i];
//移动
}
double res=0;
for(int i=0;i<d;i++)
{
res+=poi[i]*poi[i];
//相量长度
}
res=sqrt(res);
for(int i=0;i<d;i++)
{
poi[i]/=res;
//变成单位向量
}
T*=0.987654321;
}
double res=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<d;j++)
{
res+=st[i][j]*st[i][j];
//式子的第一部分
}
}
for(int i=1;i<=n;i++)
{
double vec_x=0;
for(int j=0;j<d;j++)
{
vec_x+=st[i][j]*poi[j];
//式子的第二部分
}
res-=vec_x*vec_x;
}
printf("%.10f\n",res);
}

\(T3\)恋歌

\(zjr:\)你们可以去问\(myh,\)这道题当时没人改

\(so,\)这道题咕了

5.27 NOI 模拟的更多相关文章

  1. 5.30 NOI 模拟

    $5.30\ NOI $模拟 高三大哥最后一次模拟考了,祝他们好运 \(T1\)装箱游戏 显然可以将四种字母之间的空缺当做状态枚举 那么这道题就很显然了 #include<bits/stdc++ ...

  2. 5.23 NOI 模拟

    $5.23\ NOI $模拟 \(T1\)简单的计算几何题 \(zjr:\)我当时没改,那么自己看题解吧 倒是有个简单的随机化方法(能获得\(72pts,\)正确性未知)\(:\) 随机两条切椭圆的平 ...

  3. 5.6 NOI模拟

    \(5.6\ NOI\)模拟 明天就母亲节了,给家里打了个电话(\(lj\ hsez\)断我电话的电,在宿舍打不了,只能用教练手机打了) 其实我不是很能看到自己的\(future,\)甚至看不到高三的 ...

  4. 5.4 NOI模拟

    \(5.4\ NOI\)模拟 \(T1\) 想到分讨,但是暴力输出一下方案之后有很多特别的情况要讨论,就弃了... 假设\(a\)是原序列,\(b\)是我们得到的序列 设\(i\)是最长公共前缀,\( ...

  5. NOI模拟赛 Day1

    [考完试不想说话系列] 他们都会做呢QAQ 我毛线也不会呢QAQ 悲伤ING 考试问题: 1.感觉不是很清醒,有点困╯﹏╰ 2.为啥总不按照计划来!!! 3.脑洞在哪里 4.把模拟赛当作真正的比赛,紧 ...

  6. NOI 模拟赛 #2

    得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...

  7. 【2018.12.10】NOI模拟赛3

    题目 WZJ题解 大概就是全场就我写不过 $FFT$ 系列吧……自闭 T1 奶一口,下次再写不出这种 $NTT$ 裸题题目我就艹了自己 -_-||| 而且这跟我口胡的自创模拟题 $set1$ 的 $T ...

  8. 7.27 NOIP模拟测试9 随 (rand)+单(single)+题(problem)

    T1 随 (rand) dp+矩阵优化+原根 看着题解懵了一晚上加一上午,最后还是看了DeepinC的博客才把暴力码出来,正解看得一知半解,循环矩阵也不太明白,先留坑吧.暴力里用二维矩阵快速幂会tle ...

  9. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

随机推荐

  1. 【算法】归并排序(Merge Sort)(五)

    归并排序(Merge Sort) 归并排序是建立在归并操作上的一种有效的排序算法.该算法是采用分治法(Divide and Conquer)的一个非常典型的应用.将已有序的子序列合并,得到完全有序的序 ...

  2. awk内建函数

    内建函数 length() 获得字符串长度 cat score.txt Marry 2143 78 84 77 Jack 2321 66 78 45 Tom 2122 48 77 71 Mike 25 ...

  3. st表 LCA

    我当时知道ST表可以 \(O(1)\) 求 LCA 的时候是极为震惊的,可以在需要反复使用 LCA 的时候卡常使用. ST表!用于解决 RMQ问题 ST表 我可能写得不好,看专业的 怎么实现? 考虑把 ...

  4. HMS Core分析服务6.5.0版本更新啦

    卸载用户价值的合理评估对制定相应的用户召回策略具有重要意义. HMS Core分析服务新版本支持查看用户卸载前使用次数.崩溃次数等指标.通过这些数据,您可以更直观地判断已卸载人群粘性以及崩溃问题对用户 ...

  5. 联发科 (MTK) sensor bring up

    MT6768平台 1.添加驱动文件 2.添加硬件配置支持 3.添加硬件配置 4.添加编译配置 5.分配空间(非必要,当代码量超过当前空间大小时将会报错,根据报错log改大小即可.) 6.兼容配置 7. ...

  6. Spring Cloud入门看这一篇就够了

    目录 SpringCloud微服务 架构演进 服务调用方式: Euraka服务注册中心 注册中心 服务提供者(服务注册) 服务消费者(服务发现) 服务续约 失效剔除和自我保护 Consul 特性 Co ...

  7. 【Redis】字典

    Redis 字典 基本语法 字典是Redis中的一种数据结构,底层使用哈希表实现,一个哈希表中可以存储多个键值对,它的语法如下,其中KEY为键,field和value为值(也是一个键值对): HSET ...

  8. Linux常用命令-软件包管理工具-rpm

    命令简介 rpm(RPM Package Manager)是一个强大的命令行驱动的软件包管理工具,用来安装.卸载.校验.查询和更新 Linux 系统上的软件包. 语法格式 rpm [OPTION... ...

  9. JS:对象调方法1

    找调用者 1.如果有this,就先看this在哪个函数中,就是离this最近的function,没有就是window 2.找到函数后,辨别哪个是调用者 例1: 点击查看代码 function fn() ...

  10. WPF开发随笔收录-自定义图标控件

    一.前言 1.在以前自学的过程中,软件需要使用到图标的时候,总是第一个想法是下载一个图片来充当图标使用,但实际得出来的效果会出现模糊的现象.后来网上学习了字体图标库的用法,可以在阿里云矢量图网站那里将 ...