按照以下代码测试定义的UDAGG会一直出现org.apache.flink.table.api.ValidationException: SQL validation failed. null 问题

import org.apache.flink.configuration.JobManagerOptions
import org.apache.flink.table.api.scala.BatchTableEnvironment
import org.apache.flink.table.api.{EnvironmentSettings, TableEnvironment}
import org.apache.flink.table.catalog.hive.HiveCatalog object testsql {
def main(args: Array[String]): Unit = {
val settings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build() val tEnv = TableEnvironment.create(settings) tEnv.sqlUpdate("create function replaces as 'com.bigdata.util.udf.Replaces'")
tEnv.sqlUpdate("create function avgprice as \'com.bigdata.util.udf.AvgPriceAgg\'") tEnv.sqlUpdate(getSourceSql)//创建数据源
tEnv.sqlUpdate(getSinkSql)//创建写入表
tEnv.sqlUpdate(processSql)//处理逻辑
tEnv.execute("SQL Job")
} def getSourceSql = "CREATE TABLE order_info (...) with(...)" def processSql = "INSERT INTO datasink select avgprice(a.price,a.total_count) as avg_price from order_info a group by a.item_id"

def getSinkSql = "CREATE TABLE datasink (...) with(...)"

}

原来运行时的异常信息找不见了,以下是在单元测试的异常

org.apache.flink.table.api.ValidationException: SQL validation failed. null

    at org.apache.flink.table.calcite.FlinkPlannerImpl.validateInternal(FlinkPlannerImpl.scala:130)
at org.apache.flink.table.calcite.FlinkPlannerImpl.validate(FlinkPlannerImpl.scala:105)
at org.apache.flink.table.sqlexec.SqlToOperationConverter.convert(SqlToOperationConverter.java:124)
at org.apache.flink.table.planner.ParserImpl.parse(ParserImpl.java:66)
at org.apache.flink.table.api.internal.TableEnvironmentImpl.sqlQuery(TableEnvironmentImpl.java:464)
at TestAvgPriceAgg.TestAgg(TestAvgPriceAgg.java:49)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.junit.runners.model.FrameworkMethod$1.runReflectiveCall(FrameworkMethod.java:59)
at org.junit.internal.runners.model.ReflectiveCallable.run(ReflectiveCallable.java:12)
at org.junit.runners.model.FrameworkMethod.invokeExplosively(FrameworkMethod.java:56)
at org.junit.internal.runners.statements.InvokeMethod.evaluate(InvokeMethod.java:17)
at org.junit.runners.ParentRunner$3.evaluate(ParentRunner.java:306)
at org.junit.runners.BlockJUnit4ClassRunner$1.evaluate(BlockJUnit4ClassRunner.java:100)
at org.junit.runners.ParentRunner.runLeaf(ParentRunner.java:366)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:103)
at org.junit.runners.BlockJUnit4ClassRunner.runChild(BlockJUnit4ClassRunner.java:63)
at org.junit.runners.ParentRunner$4.run(ParentRunner.java:331)
at org.junit.runners.ParentRunner$1.schedule(ParentRunner.java:79)
at org.junit.runners.ParentRunner.runChildren(ParentRunner.java:329)
at org.junit.runners.ParentRunner.access$100(ParentRunner.java:66)
at org.junit.runners.ParentRunner$2.evaluate(ParentRunner.java:293)
at org.junit.runners.ParentRunner$3.evaluate(ParentRunner.java:306)
at org.junit.runners.ParentRunner.run(ParentRunner.java:413)
at org.junit.runner.JUnitCore.run(JUnitCore.java:137)
at com.intellij.junit4.JUnit4IdeaTestRunner.startRunnerWithArgs(JUnit4IdeaTestRunner.java:68)
at com.intellij.rt.execution.junit.IdeaTestRunner$Repeater.startRunnerWithArgs(IdeaTestRunner.java:47)
at com.intellij.rt.execution.junit.JUnitStarter.prepareStreamsAndStart(JUnitStarter.java:242)
at com.intellij.rt.execution.junit.JUnitStarter.main(JUnitStarter.java:70)
Caused by: java.lang.NullPointerException
at org.apache.flink.util.Preconditions.checkNotNull(Preconditions.java:58)
at org.apache.flink.table.functions.AggregateFunctionDefinition.<init>(AggregateFunctionDefinition.java:48)
at org.apache.flink.table.functions.FunctionDefinitionUtil.createFunctionDefinition(FunctionDefinitionUtil.java:57)
at org.apache.flink.table.catalog.FunctionCatalog.resolvePreciseFunctionReference(FunctionCatalog.java:336)
at org.apache.flink.table.catalog.FunctionCatalog.lambda$resolveAmbiguousFunctionReference$2(FunctionCatalog.java:374)
at java.util.Optional.orElseGet(Optional.java:267)
at org.apache.flink.table.catalog.FunctionCatalog.resolveAmbiguousFunctionReference(FunctionCatalog.java:374)
at org.apache.flink.table.catalog.FunctionCatalog.lookupFunction(FunctionCatalog.java:303)
at org.apache.flink.table.catalog.FunctionCatalogOperatorTable.lookupOperatorOverloads(FunctionCatalogOperatorTable.java:74)
at org.apache.calcite.sql.util.ChainedSqlOperatorTable.lookupOperatorOverloads(ChainedSqlOperatorTable.java:73)
at org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1194)
at org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1179)
at org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1209)
at org.apache.calcite.sql.validate.SqlValidatorImpl.performUnconditionalRewrites(SqlValidatorImpl.java:1179)
at org.apache.calcite.sql.validate.SqlValidatorImpl.validateScopedExpression(SqlValidatorImpl.java:936)
at org.apache.calcite.sql.validate.SqlValidatorImpl.validate(SqlValidatorImpl.java:650)
at org.apache.flink.table.calcite.FlinkPlannerImpl.validateInternal(FlinkPlannerImpl.scala:126)
... 30 more

大概意思就是sql校验没有通过,对照代码行数在执行processSql 这句的时候有问题,然后查看TableEnvironment发现只支持注册ScalarFunction,并且没有重载方法

查看源码发现TableEnvironment是顶级接口

在实现上是 5 个面向用户的接口,在接口底层进行了不同的实现,5 个接口包括一个 TableEnvironment 接口,两个 BatchTableEnvironment 接口,两个 StreamTableEnvironment 接口,5 个接口文件完整路径如下:

org.apache.flink.table.api.TableEnvironment

org.apache.flink.table.api.java.BatchTableEnvironment

org.apache.flink.table.api.java.StreamTableEnvironment

org.apache.flink.table.api.scala.BatchTableEnvironment

org.apache.flink.table.api.scala.StreamTableEnvironment

其中,TableEnvironment 作为统一的接口,其统一性体现在两个方面,一是对于所有基于JVM的语言(即 Scala API 和 Java API 之间没有区别)是统一的;二是对于 unbounded data (无界数据,即流数据) 和 bounded data (有界数据,即批数据)的处理是统一的。TableEnvironment 提供的是一个纯 Table 生态的上下文环境,适用于整个作业都使用 Table API & SQL 编写程序的场景。TableEnvironment 目前只支持Scalar Functions,不支持注册 UDTF 和 UDAF,用户有注册 UDTF 和 UDAF 的需求时,可以选择使用其他 TableEnvironment。

两个 StreamTableEnvironment 分别用于 Java 的流计算和 Scala 的流计算场景,流计算的对象分别是 Java 的 DataStream  和 Scala 的 DataStream。相比 TableEnvironment,StreamTableEnvironment 提供了 DataStream 和 Table 之间相互转换的接口,如果用户的程序除了使用 Table API & SQL 编写外,还需要使用到 DataStream API,则需要使用 StreamTableEnvironment。

两个 BatchTableEnvironment 分别用于 Java 的批处理场景和 Scala 的批处理场景,批处理的对象分别是 Java 的 DataSet 和 Scala 的 DataSet。相比 TableEnvironment,BatchTableEnvironment 提供了 DataSet 和 Table 之间相互转换的接口,如果用户的程序除了使用 Table API & SQL 编写外,还需要使用到 DataSet API,则需要使用 BatchTableEnvironment。

这样就一目了然了,这里使用的TableEnvironment无法支持UDAGG,通过改造使用StreamTableEnvironment就能够完美运行了

import org.apache.flink.streaming.api.CheckpointingMode
import org.apache.flink.streaming.api.environment.CheckpointConfig.ExternalizedCheckpointCleanup
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment
import org.apache.flink.table.api.{EnvironmentSettings}
import org.apache.flink.table.api.java.StreamTableEnvironment object tests {
def main(args: Array[String]): Unit = {
val settings = EnvironmentSettings.newInstance()
.useBlinkPlanner()
.inStreamingMode()
.build() val streamExecEnvironment = getStreamEnv
val tEnv: StreamTableEnvironment = StreamTableEnvironment.create(streamExecEnvironment, settings)
tEnv.sqlUpdate("create function replaces as 'com.bigdata.util.udf.Replaces'")
tEnv.registerFunction("avgprice", new AvgPriceAgg()) tEnv.sqlUpdate(getSourceSql)
tEnv.sqlUpdate(getSinkSql)
tEnv.sqlUpdate(processSql)
tEnv.execute("SQL Job")
} def getStreamEnv(): StreamExecutionEnvironment = {
val env = StreamExecutionEnvironment.getExecutionEnvironment env.enableCheckpointing(60 * 1000 * 10, CheckpointingMode.EXACTLY_ONCE)
val config = env.getCheckpointConfig
//RETAIN_ON_CANCELLATION在job canceled的时候会保留externalized checkpoint state
config.enableExternalizedCheckpoints(ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION)
//用于指定checkpoint coordinator上一个checkpoint完成之后最小等多久可以出发另一个checkpoint,当指定这个参数时,maxConcurrentCheckpoints的值为1
config.setMinPauseBetweenCheckpoints(60 * 1000 * 5)
//用于指定运行中的checkpoint最多可以有多少个,如果有设置了minPauseBetweenCheckpoints,则maxConcurrentCheckpoints这个参数就不起作用了(大于1的值不起作用)
config.setMaxConcurrentCheckpoints(1)
//指定checkpoint执行的超时时间(单位milliseconds),超时没完成就会被abort掉
config.setCheckpointTimeout(60 * 1000 * 15)
//用于指定在checkpoint发生异常的时候,是否应该fail该task,默认为true,如果设置为false,则task会拒绝checkpoint然后继续运行
//https://issues.apache.org/jira/browse/FLINK-11662 1.10改为配置失败次数 配置false的话就默认最大2147483647
config.setFailOnCheckpointingErrors(false)
env
}
def getSourceSql = "CREATE TABLE order_info (...) with(...)"
def processSql = "INSERT INTO datasink select avgprice(a.price,a.total_count) as avg_price from order_info a group by a.item_id"
def getSinkSql = "CREATE TABLE datasink (...) with(...)"
}

  

参考文档:https://blog.csdn.net/weixin_44904816/article/details/102550056

Flink1.10定义UDAGG遇到SQL validation failed. null 问题的更多相关文章

  1. Validation failed for query for method

    问题原因 sql语法,使用@Query("select id, username, usersex, userphone from User where User.usersex = ?1& ...

  2. (2.10)Mysql之SQL基础——约束及主键重复处理

    (2.10)Mysql之SQL基础——约束及主键重复处理 关键词:mysql约束,批量插入数据主键冲突 [1]查看索引: show index from table_name; [2]查看有约束的列: ...

  3. 异常 Failed to bind NettyServer on /10.133.7.216:29105, cause: Failed to bind to: /0.0.0.0:29105

    "C:\Program Files\Java\jdk1.7.0_80\bin\java" -agentlib:jdwp=transport=dt_socket,address=12 ...

  4. Validation failed for query for method public abstract boxfish.bean.Student boxfish.service.StudentServiceBean.find(java.lang.String)!

    转自:https://blog.csdn.net/lzx925060109/article/details/40323741 1. Exception in thread "main&quo ...

  5. ORA-19563: header validation failed for file

    在测试服务器还原数据库时遇到了ORA-19563错误.如下所示 RMAN-00571: ======================================================== ...

  6. MS SQL错误:SQL Server failed with error code 0xc0000000 to spawn a thread to process a new login or connection. Check the SQL Server error log and the Windows event logs for information about possible related problems

          早晨宁波那边的IT人员打电话告知数据库无法访问了.其实我在早晨也发现Ignite监控下的宁波的数据库服务器出现了异常,但是当时正在检查查看其它服务器发过来的各类邮件,还没等到我去确认具体情 ...

  7. Validation failed for one or more entities. See ‘EntityValidationErrors’解决方法

    Validation failed for one or more entities. See ‘EntityValidationErrors’解决方法 You can extract all the ...

  8. Validation failed for one or more entities. See 'EntityValidationErrors' property for more details.

    Validation failed for one or more entities. See 'EntityValidationErrors' property for more details. ...

  9. Validation failed for one or more entities. See ‘EntityValidationErrors’解决方法【转载】

    摘自:http://www.cnblogs.com/douqiumiao/default.aspx?opt=msg Validation failed for one or more entities ...

  10. “Validation failed for one or more entities”异常的解决办法

    日志中出现Entity Framework修改数据库时的错误: Validation failed for one or more entities. See 'EntityValidationErr ...

随机推荐

  1. PHP判断访问来源是PC端还是移动端

    一个方法轻松搞定,各种判断后当返回true为移动端,反之为PC端. function isMobile(){ // 如果有HTTP_X_WAP_PROFILE则一定是移动设备 if (isset ($ ...

  2. ES的数据结构

    1 ES的数据结构 es使用怎样的数据结构来存储数据呢 通过以下四种的逻辑组合来存储数据:索引.类型.文档和字段. 1.1 index索引 数据属于哪个索引?不同的数据用不同的索引来区分. 比如 当前 ...

  3. spring-cloud03-consul

    官网的安装说明https://learn.hashicorp.com/tutorials/consul/get-started-install 1.下载安装 环境:阿里云服务器,consul1.9.5 ...

  4. 【爬虫+数据清洗+可视化分析】舆情分析哔哩哔哩"狂飙"的评论

    目录 一.背景介绍 二.爬虫代码 2.1 展示爬取结果 2.2 爬虫代码讲解 三.可视化代码 3.1 读取数据 3.2 数据清洗 3.3 可视化 3.3.1 IP属地分析-柱形图 3.3.2 评论时间 ...

  5. java基础(数组、面向抽象编程、static、异常)

    数组 相同的数据类型的数据集合 按照一定的先后次序排列组合 通过下标来访问他们 声明---创建 建议 String[] a; String a [];//c 和c++才有不专业 String [] a ...

  6. 【Raspberry Pi / 树莓派】小小工控机担起大大责任

    CM4 Nano是一款基于Raspberry Pi / 树莓派 Compute Module 4(简称CM4),由EDATEC面向工业应用设计的嵌入式计算机, 充分利用CM4在结构上灵活性解决CPU, ...

  7. ctfshow-web入门-SSTI学习

    千万要仔细,不要拼错单词 千万要仔细,不要拼错单词 千万要仔细,不要拼错单词 web 361 payload name={{[].__class__.__base__.__subclasses__() ...

  8. chatGPT帮助开发实战解答问题和反思

    问题来自.Net开发群友 问题 我想做一个自动生成单据号的功能,但是在EFCORE里没有行级锁,请有什么等价方案吗? ChatGPT回答 在 EF Core 中确实没有提供行级锁(row-level ...

  9. 图论之最短路径Dijkstra算法

    /** 图论之最短路径Dijkstra算法 */ #include<string.h> #include<stdio.h> #include<vector> #in ...

  10. 使用 UnoCSS shortcuts 简化 class

    UnoCSS 确实简化了不少样式书写.也降低了 CSS 打包体积,提升了样式使用率.但样式太多的话,class 也写得多,比较费眼.所幸,UnoCSS 提供了 shortcuts 来简化 class, ...