LGP7884题解
是的,这是一篇使用 min25 筛的题解。。。
本题解参考command_block大佬的博客,代码是对其在 LOJ 上的提交卡常后写出来的。
ML 板子把数据开到 \(10^{13}\) 速度还和供题人的 ML 速度差不多快就离谱。。。好吧我吸了氧
这个板子的原理是使用树状数组优化的 min25 筛,在下面会详细讲解。复杂度是 \(O((\frac n {\log n})^{\frac 2 3})\) 的。
首先有经典 DP:
\]
边界条件为:
\]
根据积分,可以得到朴素的 DP 是 \(O(\frac {n^{\frac 3 4}} {\log n})\) 的。接下来尝试使用树状数组维护对于 \(n\) 过小时的 \(G\)。
设分治线为 \(B1\)。对 \(B1\) 一下的所有 \(G\) 使用树状数组维护,对于 \(B1\) 以上的 \(G\) 使用 DP。
这一部分的复杂度为 \(O(B1\log B1+\frac n {\sqrt{B1}\log n})\),取 \(B1=\frac {n^{\frac 2 3}} {\log^{\frac 4 3} n}\) 可以得到复杂度为 \(O(\frac {n^{\frac 2 3}} {\log^{\frac 1 3} n})\)。
继续分治,令 \(B2\) 以下的部分暴力统计。
当 \(B2=\sqrt [6] n\) 时,复杂度为 \(O(n^{\frac 2 3}\log n+\frac n {\sqrt{B1}\log n}+B1)\),取 \(B1=(\frac n {\log n})^{\frac 2 3}\) 可以得到复杂度为 \(O((\frac n {\log n})^{\frac 2 3})\)。
复杂度的具体推导可以看 blog。笔者看不懂于是懒得解释直接贺代码了
//感谢@command_block的板子
#include<cstdio>
#include<cmath>
const int M=3e7,Lim=8.5e7+10;
typedef unsigned long long ull;
int l2,tot,lim,BIT[Lim];
ull n,g[M],w[M];
double inv[M];
bool e[Lim];
inline ull min(const ull&a,const ull&b){
return a>b?b:a;
}
inline ull max(const ull&a,const ull&b){
return a>b?a:b;
}
inline void Add(int x){
e[x]=1;
while(x<=lim)++BIT[x],x+=x&-x;
}
inline ull Query(int x){
ull sum=x;
while(x)sum-=BIT[x],x^=x&-x;
return sum;
}
signed main(){
register int i,j,tl,tl2,tl3;
register ull t,r,x0;
scanf("%llu",&n);
lim=min(max(max((pow(n/log2(n),0.66)),l2=sqrtl(n)+1),10000),n);
for(i=1;i<=l2;i++)w[i]=i-1,inv[i]=1./i;
for(tot=1;1ull*lim*tot<n;tot++)g[tot]=n*inv[tot]+1e-6-1;
--tot;Add(1);
for(i=2;1ull*i*i<=n;i++){
if(e[i])continue;
x0=w[i-1];t=n/i;r=1ull*i*i;
tl=min(n/r,(ull)tot);tl2=min(tl,n/(1ull*l2*i));tl3=min(tl2,tot/i);
for(j=1;j<=tl3;++j)g[j]-=g[j*i]-x0;
for(j=tl3+1;j<=tl2;j++)g[j]-=Query(t*inv[j]+1e-6)-x0;
for(j=tl2+1;j<=tl;++j)g[j]-=w[int(t*inv[j]+1e-6)]-x0;
for(j=l2;j>=r;--j)w[j]-=w[int(j*inv[i]+1e-6)]-x0;
if(1ull*i*i<=lim){
for(j=i*i;j<=lim;j+=i)if(!e[j])Add(j);
}
}
if(!tot)g[1]=Query(n);
printf("%llu",g[1]);
}
LGP7884题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Java中Arrays数组工具类的使用全解
本文几乎涵盖了所有的Arrays工具类(基于Java 11)的方法以及使用用例,一站式带你了解Arrays类的用法,希望对大家有帮助. 码字不易,三连支持一下吧 Arrays数组工具类 方法一览表 快 ...
- [TJOI2013] 奖学金
代码: #include<bits/stdc++.h> using namespace std; long long n,c,ff,ans; long long suma[200010], ...
- HDFS源码解析系列一——HDFS通信协议
通信架构 首先,看下hdfs的交互图: 可以看到通信方面是有几个角色的:客户端(client).NameNode.SecondaryNamenode.DataNode;其中SecondaryNamen ...
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 0x00 摘要 0x01 总体流程 ...
- Solution -「LOCAL」二进制的世界
\(\mathcal{Description}\) OurOJ. 给定序列 \(\{a_n\}\) 和一个二元运算 \(\operatorname{op}\in\{\operatorname{ ...
- Solution -「NOI.AC 省选膜你赛」array
题目 题意简述 维护一个长度为 \(n\) 的序列 \(\{a_n\}\),并给出 \(q\) 个操作: 将下标为 \(x\) 的数修改为 \(y\). 给定 \(l,r,k\),求最大的 \(m ...
- CentOS 7.6 部署 GlusterFS 分布式存储系统
文章目录 GlusterFS简介 环境介绍 开始GlusterFS部署 配置hosts解析 配置GlusterFS 创建文件系统 安装GlusterFS 启动GlusterFS 将节点加入到主机池 创 ...
- 练习推导一个最简单的BP神经网络训练过程【个人作业/数学推导】
写在前面 各式资料中关于BP神经网络的讲解已经足够全面详尽,故不在此过多赘述.本文重点在于由一个"最简单"的神经网络练习推导其训练过程,和大家一起在练习中一起更好理解神经网络训 ...
- 掌握这20个JS技巧,做一个不加班的前端人
摘要:JavaScript 真的是一门很棒的语言,值得学习和使用.对于给定的问题,可以有不止一种方法来达到相同的解决方案.在本文中,我们将只讨论最快的. 本文分享自华为云社区<提高代码效率的 2 ...
- sql注入代码分析及预防
sql注入的原因,表面上说是因为 拼接字符串,构成sql语句,没有使用 sql语句预编译,绑定变量.但是更深层次的原因是,将用户输入的字符串,当成了 "sql语句" 来执行. 1. ...