使用Ceres求解非线性优化问题,一共分为三个部分:

1、 第一部分:构建cost fuction,即代价函数,也就是寻优的目标式。这个部分需要使用仿函数(functor)这一技巧来实现,做法是定义一个cost function的结构体,在结构体内重载()运算符。

2、 第二部分:通过代价函数构建待求解的优化问题。

3、 第三部分:配置求解器参数并求解问题,这个步骤就是设置方程怎么求解、求解过程是否输出等,然后调用一下Solve方法

#include <iostream>
#include <opencv2/core/core.hpp>
#include <ceres/ceres.h>
#include <chrono> using namespace std; // 代价函数的计算模型
struct CURVE_FITTING_COST {
CURVE_FITTING_COST(double x, double y) : _x(x), _y(y) {} // 残差的计算
template<typename T>
bool operator()(
const T *const abc, // 模型参数,待优化的参数,有3维
T *residual) const {
residual[0] = T(_y) - ceres::exp(abc[0] * T(_x) * T(_x) + abc[1] * T(_x) + abc[2]); // y-exp(ax^2+bx+c) //残差,也就是代价函数的输出
return true;
} const double _x, _y; // x,y数据
}; int main(int argc, char **argv) {
double ar = 1.0, br = 2.0, cr = 1.0; // 真实参数值
double ae = 2.0, be = -1.0, ce = 5.0; // 估计参数值
int N = 100; // 数据点
double w_sigma = 1.0; // 噪声Sigma值
double inv_sigma = 1.0 / w_sigma;
cv::RNG rng; // OpenCV随机数产生器 vector<double> x_data, y_data; // 数据
for (int i = 0; i < N; i++) {
double x = i / 100.0;
x_data.push_back(x);
y_data.push_back(exp(ar * x * x + br * x + cr) + rng.gaussian(w_sigma * w_sigma));
} double abc[3] = {ae, be, ce}; // 构建最小二乘问题
ceres::Problem problem;
for (int i = 0; i < N; i++) {
problem.AddResidualBlock( // 向问题中添加误差项
// 使用自动求导,将定义的代价函数结构体传入。模板参数:误差类型,输出维度即残差的维度,输入维度即优化参数的维度,维数要与前面struct中一致
new ceres::AutoDiffCostFunction<CURVE_FITTING_COST, 1, 3>(
new CURVE_FITTING_COST(x_data[i], y_data[i])
),
nullptr, // 核函数,这里不使用,为空
abc // 待估计参数
);
} // 配置求解器
ceres::Solver::Options options; // 这里有很多配置项可以填
options.linear_solver_type = ceres::DENSE_NORMAL_CHOLESKY; // 增量方程如何求解
//options.linear_solver_type = ceres::DENSE_QR;
options.minimizer_progress_to_stdout = true; // 输出到cout ceres::Solver::Summary summary; // 优化信息
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
ceres::Solve(options, &problem, &summary); // 开始优化,求解
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
chrono::duration<double> time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "solve time cost = " << time_used.count() << " seconds. " << endl; // 输出结果
cout << summary.BriefReport() << endl; //输出优化的简要信息
cout << "estimated a,b,c = ";
for (auto a:abc) cout << a << " ";
cout << endl; return 0;
}

cmakelists.txt:

cmake_minimum_required(VERSION 2.8)
project(gaussnewton)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
find_package(OpenCV REQUIRED)
include_directories(${OpenCV_INCLUDE_DIRS})
find_package(Ceres REQUIRED)
include_directories(${CERES_INCLUDE_DIRS})
include_directories("/usr/include/eigen3")
set(SOURCE_FILES main.cpp)
add_executable(gaussnewton ${SOURCE_FILES})
target_link_libraries(gaussnewton ${OpenCV_LIBS})
target_link_libraries(gaussnewton ${CERES_LIBRARIES})

视觉十四讲:第六讲_ceres非线性优化的更多相关文章

  1. ros系统21讲—前六讲

    课程介绍(第一讲) linux介绍安装(第二讲) linux的基础操作(第三讲) ROS中语言c++与python介绍(第四讲) 安装ROS系统(第五讲) 第一个: sudo sh -c echo d ...

  2. 高翔《视觉SLAM十四讲》从理论到实践

    目录 第1讲 前言:本书讲什么:如何使用本书: 第2讲 初始SLAM:引子-小萝卜的例子:经典视觉SLAM框架:SLAM问题的数学表述:实践-编程基础: 第3讲 三维空间刚体运动 旋转矩阵:实践-Ei ...

  3. 视觉slam学习之路(一)看高翔十四讲所遇到的问题

      目前实验室做机器人,主要分三个方向,定位导航,建图,图像识别,之前做的也是做了下Qt上位机,后面又弄红外识别,因为这学期上课也没怎么花时间在项目,然后导师让我们确定一个方向来,便于以后发论文什么. ...

  4. 浅读《视觉SLAM十四讲:从理论到实践》--操作1--初识SLAM

    下载<视觉SLAM十四讲:从理论到实践>源码:https://github.com/gaoxiang12/slambook 第二讲:初识SLAM 2.4.2 Hello SLAM(书本P2 ...

  5. 第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理

    第三百六十四节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)的mapping映射管理 1.映射(mapping)介绍 映射:创建索引的时候,可以预先定义字 ...

  6. 高博-《视觉SLAM十四讲》

    0 讲座 (1)SLAM定义 对比雷达传感器和视觉传感器的优缺点(主要介绍视觉SLAM) 单目:不知道尺度信息 双目:知道尺度信息,但测量范围根据预定的基线相关 RGBD:知道深度信息,但是深度信息对 ...

  7. 《视觉SLAM十四讲》第2讲

    目录 一 视觉SLAM中的传感器 二 经典视觉SLAM框架 三 SLAM问题的数学表述 注:原创不易,转载请务必注明原作者和出处,感谢支持! 本讲主要内容: (1) 视觉SLAM中的传感器 (2) 经 ...

  8. 《视觉SLAM十四讲》第1讲

    目录 一 视觉SLAM 注:原创不易,转载请务必注明原作者和出处,感谢支持! 一 视觉SLAM 什么是视觉SLAM? SLAM是Simultaneous Localization and Mappin ...

  9. 视觉slam十四讲第七章课后习题6

    版权声明:本文为博主原创文章,转载请注明出处: http://www.cnblogs.com/newneul/p/8545450.html 6.在PnP优化中,将第一个相机的观测也考虑进来,程序应如何 ...

  10. 视觉slam十四讲第七章课后习题7

    版权声明:本文为博主原创文章,转载请注明出处:http://www.cnblogs.com/newneul/p/8544369.html  7.题目要求:在ICP程序中,将空间点也作为优化变量考虑进来 ...

随机推荐

  1. Go语言核心36讲15---结构体

    我们都知道,结构体类型表示的是实实在在的数据结构.一个结构体类型可以包含若干个字段,每个字段通常都需要有确切的名字和类型. 前导内容:结构体类型基础知识 当然了,结构体类型也可以不包含任何字段,这样并 ...

  2. 关于Module Not Found Error No module named Crypto解决

    前言 之前就遇到这个问题, 当然是windows上具有的问题 问题描述 from Crypto.Cipher import AES 出现 ModuleNotFoundError: No module ...

  3. day10 Test

    public class Test{ public static void main(String[] args){ fun1(); } /**1. * 有2个数组,第一个数组内容为:[黑龙江省,浙江 ...

  4. vue3 + element plus 使用字节跳动图标

    使用场景: 提一下vue2 用法>> 下面回到正题 vue3 用法 1  安装包: npm install @icon-park/vue-next --save 2  字节跳动图标库取图地 ...

  5. java面试题-常用框架

    Spring Spring 是什么 一个开发框架,一个容器,主要由面向切面AOP 和依赖注入DI两个方面,外加一些工具 AOP和IOC AOP 面向切面 AOP是一种编程思想,主要是逻辑分离, 使业务 ...

  6. K近邻算法(k-nearest neighbor, kNN)

    K近邻算法(K-nearest neighbor, KNN) KNN是一种分类和回归方法. KNN简介 KNN模型3要素 KNN优缺点 KNN应用 参考文献 KNN简介 KNN思想 给定一个训练集 T ...

  7. 项目完成小结 - Django-React-Docker-Swag部署配置

    前言 最近有个项目到一段落,做个小结记录. 内容可能会多次补充,在博客上实时更新哈~ 如果是在公众号阅读这篇文章,可以点击「查看原文」访问最新版本~ 这个项目是前后端分离,后端为了快,依然用我的Dja ...

  8. 基于 Spring Cloud 的微服务脚手架

    基于 Spring Cloud 的微服务脚手架 作者: Grey 原文地址: 博客园:基于 Spring Cloud 的微服务脚手架 CSDN:基于 Spring Cloud 的微服务脚手架 本文主要 ...

  9. java中的自增运算

    本文主要阐明java中的自增运算 1.当i ++ 与 ++ i作为单独语句时,作用与i = i +1一样 2.当赋值时,结果就不一样了 temp = i ++: 操作顺序:1)temp = i: 2) ...

  10. 解读JVM级别本地缓存Caffeine青出于蓝的要诀3 —— 讲透Caffeine的数据驱逐淘汰机制与用法

    大家好,又见面了. 本文是笔者作为掘金技术社区签约作者的身份输出的缓存专栏系列内容,将会通过系列专题,讲清楚缓存的方方面面.如果感兴趣,欢迎关注以获取后续更新. 上一篇文章中,我们聊了下Caffein ...