跟我学算法-SVM(支持向量机)
支持向量机是一个点离决策边界越近,离决策面越远的问题
求解的过程主要是通过拉格朗日乘子法,来求解带约束的优化问题,在问题中涉及两个方面,一个是线性的,一个是非线性的,非线性的有
我们平时比较常见的高斯核函数(径向基函数),他的主要做法就是把低维的数据变成高维数据,通过^2的方法
在支持向量基中的参数有 svc__C(松弛因子)和svc__gamma 两个参数,两个参数越大,模型的复杂度也越大
接下来我们使用一组人脸数据来进行模型,我们会进行参数调节
第一步数据载入
from sklearn.datasets import fetch_lfw_people #从datasets数据包中获取数据
import pandas as pd
import matplotlib.pyplot as plt
faces = fetch_lfw_people(min_faces_per_person=60) #不小于60张图片
print(faces.target_names) #输出照片里的人物名字
print(faces.images.shape) #输出照片的大小, 639张, 62*47表示的是像素点,每个像素点代表的是一个数据
第二步 取前15张图片,画成3行5列的图片
fig, ax = plt.subplots(3, 5)
for i, axi in enumerate(ax.flat):
axi.imshow(faces.images[i], cmap='bone') # cmap 表示配色方案,bone表示苍白的
axi.set(xticks=[], yticks=[], xlabel=faces.target_names[faces.target[i]]) #faces.target[i]对应着0和1标签,
# target_names 的 key 是 0和1...,value是名字
plt.show()
第三步:通过make_pipeline 连接pca,svm函数
from sklearn.svm import SVC
from sklearn.decomposition import PCA
from sklearn.pipeline import make_pipeline pca = PCA(n_components=150, whiten=True, random_state=42) #whiten确保无相关的输出
svc = SVC(kernel='rbf', class_weight='balanced') #核函数为径向基函数 model = make_pipeline(pca, svc) #连接两个函数, 函数按照先后顺序执行
第四步: 通过GridSearchCV调节svc__C 和 svc__gamma 参数,.best_estimator获得训练好的模型
#把函数分为训练集和测试集
from sklearn.model_selection import train_test_split Xtrain, Xtest, Ytrain, Ytest = train_test_split(faces.data, faces.target, random_state=40) #参数调整svc__C和svc__gamma
from sklearn.model_selection import GridSearchCV #备选参数
param_grid = {'svc__C':[1, 5, 10],
'svc__gamma':[0.0001, 0.0005, 0.001]} grid = GridSearchCV(model, param_grid) #第一个参数是model(模型), 第二个参数是param_grid 需要调整的参数
print(Xtrain.shape, Ytrain.shape)
grid.fit(Xtrain, Ytrain) #建立模型
print(grid.best_params_) #输出模型的参数组合 model = grid.best_estimator_ #输出最好的模型 yfit = model.predict(Xtest) #用当前最好的模型做预测
第五步:对预测结果画图,这里画了4*6的图
fig , ax = plt.subplots(4, 6) #画出24副图,呈现4行6列的摆放形式 for i, axi in enumerate(ax.flat):
axi.imshow(Xtest[i].reshape(62, 47), cmap='bone')
axi.set(xticks=[], yticks=[])
axi.set_ylabel(faces.target_names[yfit[i]].split()[-1], #取名字的后一个字符,如果预测结果与真实结果相同,贤黑色,否则显红色
color='black'if yfit[i]==Ytest[i] else 'red') plt.show()
fig.suptitle('Predicted Names; Incorrect Labels in Red', size=14) #加上标题 from sklearn.metrics import classification_report #输出精确度,召回值
print(classification_report(Ytest, yfit, target_names=faces.target_names))

第六步:画出一个混淆矩阵的图
from sklearn.metrics import confusion_matrix #做混淆矩阵
import seaborn as sns
mat = confusion_matrix(Ytest, yfit) #Ytest表示待测标签, yfit表示预测结果 sns.heatmap(mat.T, square=True, annot=True, fmt='d', cbar=False,
xticklabels=faces.target_names,
yticklabels=faces.target_names)
plt.xlabel('true label')
plt.ylabel('predicted label')
plt.show()

跟我学算法-SVM(支持向量机)的更多相关文章
- 跟我学算法-svm支持向量机算法推导
Svm算法又称为支持向量机,是一种有监督的学习分类算法,目的是为了找到两个支持点,用来使得平面到达这两个支持点的距离最近. 通俗的说:找到一条直线,使得离该线最近的点与该线的距离最远. 我使用手写进行 ...
- 机器学习 - 算法 - SVM 支持向量机
SVM 原理引入 支持向量机( SVM,Support Vector Machine ) 背景 2012年前较为火热, 但是在12年后被神经网络逼宫, 由于应用场景以及应用算法的不同, SVM还是需要 ...
- 机器学习 - 算法 - SVM 支持向量机 Py 实现 / 人脸识别案例
SVM 代码实现展示 相关模块引入 %matplotlib inline import numpy as np import matplotlib.pyplot as plt from scipy i ...
- 转:机器学习中的算法(2)-支持向量机(SVM)基础
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...
- SVM 支持向量机算法-原理篇
公号:码农充电站pro 主页:https://codeshellme.github.io 本篇来介绍SVM 算法,它的英文全称是 Support Vector Machine,中文翻译为支持向量机. ...
- SVM 支持向量机算法-实战篇
公号:码农充电站pro 主页:https://codeshellme.github.io 上一篇介绍了 SVM 的原理和一些基本概念,本篇来介绍如何用 SVM 处理实际问题. 1,SVM 的实现 SV ...
- 深入浅出理解SVM支持向量机算法
支持向量机是Vapnik等人于1995年首先提出的,它是基于VC维理论和结构风险最小化原则的学习机器.它在解决小样本.非线性和高维模式识别问题中表现出许多特有的优势,并在一定程度上克服了" ...
- 机器学习实战 - 读书笔记(06) – SVM支持向量机
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习笔记,这次是第6章:SVM 支持向量机. 支持向量机不是很好被理解,主要是因为里面涉及到了许多数学知 ...
- SparkMLlib分类算法之支持向量机
SparkMLlib分类算法之支持向量机 (一),概念 支持向量机(support vector machine)是一种分类算法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最 ...
随机推荐
- day3 文件系统 内核模块 ctags
nfs网络文件系统 smb 修改配置文件 sudo vim /etc/samba/smb.conf 重启服务 /etc/init.d/samba restart 自制小的文件系统 1 ...
- Encode Adjacent Letters
Encode a string by counting the consecutive letter. (i.e., "aaaabbxxxyyz" might become &qu ...
- BZOJ2216 Poi2011 Lightning Conductor 【决策单调性优化DP】
Description 已知一个长度为n的序列a1,a2,...,an. 对于每个1<=i<=n,找到最小的非负整数p满足 对于任意的j, aj < = ai + p - sqrt( ...
- DependencyProperty.UnsetValue 的正确打开方式
无论是 WPF,还是 UWP,只要你用了绑定或者标记扩展,一定会碰到一个神奇的值——DependencyProperty.UnsetValue.UnsetValue 是什么意思?为什么会出现这个值呢? ...
- SEO方案
前端需要注意哪些SEO 合理的title.description.keywords:搜索对着三项的权重逐个减小,title值强调重点即可,重要关键词出现不要超过2次,而且要靠前,不同页面title要有 ...
- 什么是spark(五)Spark SQL
Spark SQL Spark SQL主要分为两部分,一部分是Spark Sql在scala中直接,使用作为执行层面上的应用,本质上就是生成DAG的另外一种形式:其发生试下Driver中生成: ...
- Eclipse Failed to load D:\android-sdk-windows\build-tools\27.0.3\lib\dx.jar
Failed to load D:\android-sdk-windows\build-tools\27.0.3\lib\dx.jar Unknown error: Unable to build: ...
- C#制作自定义安装程序
(一),安装程序 以前用vs制作过安装程序,现在把步骤写出来,有帮助的大家一定要顶哦 第一步:建立工程 1.打开vs,新建项目->其他项目类型->安装和部署(這個子项下面有安装项目和Web ...
- 让html标签显示在页面上
用 <xmp></xmp> 标签包起来,里面的所有文字会原样显示出来 <xmp><b>1</b><div>2</div&g ...
- js 点击 隐藏弹出层
document.onmousedown = function(e){ var ev = document.all ? window.event : e; var _con = $("#ci ...