zoj 3329 概率dp
题意:有三个骰子,分别有k1,k2,k3个面。每个面值为1--kn
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0
链接:点我
设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1;
都和dp[0]有关系,而且dp[0]就是我们所求,为常数
设dp[i]=A[i]*dp[0]+B[i];
代入上述方程右边得到:
dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1
=(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1;
明显A[i]=(∑(pk*A[i+k])+p0)
B[i]=∑(pk*B[i+k])+1
先递推求得A[0]和B[0].
那么 dp[0]=B[0]/(1-A[0]);
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
using namespace std;
#define MOD 1000000007
const int INF=0x3f3f3f3f;
const double eps=1e-;
typedef long long ll;
#define cl(a) memset(a,0,sizeof(a))
#define ts printf("*****\n");
const int MAXN=;
int n,m,tt;
double p[MAXN],A[MAXN],B[MAXN];
int main()
{
int i,j,k;
int k1,k2,k3,a,b,c;
#ifndef ONLINE_JUDGE
freopen("1.in","r",stdin);
#endif
scanf("%d",&tt);
while(tt--)
{
scanf("%d%d%d%d%d%d%d",&n,&k1,&k2,&k3,&a,&b,&c);
double p0=1.0/k1/k2/k3;
cl(p),cl(A),cl(B);
for(i=;i<=k1;i++)
for(j=;j<=k2;j++)
for(k=;k<=k3;k++)
{
if(i==a&&j==b&&k==c) continue;
p[i+j+k]+=p0;
}
for(i=n;i>=;i--)
{
A[i]=p0,B[i]=;
for(j=;j<=k1+k2+k3;j++)
{
A[i]+=p[j]*A[i+j];
B[i]+=p[j]*B[i+j];
}
}
printf("%.16lf\n",B[]/(-A[]));
}
}
zoj 3329 概率dp的更多相关文章
- ZOJ Problem Set - 3329(概率DP)
One Person Game Time Limit: 1 Second Memory Limit: 32768 KB Special Judge There is a very ...
- zoj 3640 概率dp
题意:一只吸血鬼,有n条路给他走,每次他随机走一条路,每条路有个限制,如果当时这个吸血鬼的攻击力大于等于某个值,那么就会花费t天逃出去,否则,花费1天的时间,并且攻击力增加,问他逃出去的期望 用记忆化 ...
- zoj 3822 概率dp
/* 题目大意:一个n*m的棋盘,每天放一个棋子,每行每列至少有一个棋子时结束.求达到每行每列至少有一个棋子的天数的数学期望. */ #include <iostream> #includ ...
- ZOJ 3329 期望DP
题目大意: 给定3个已经规定好k1,k2,k3面的3个色子,如果扔到a,b,c则重新开始从1 计数,否则不断叠加所有面的数字之和,直到超过n,输出丢的次数的数学期望 我们在此令dp[]数组记录从当前数 ...
- poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP
poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...
- zoj 3822(概率dp)
ZOJ Problem Set - 3822 Domination Time Limit: 8 Seconds Memory Limit: 131072 KB Special Ju ...
- zoj 3822 Domination (概率dp 天数期望)
题目链接 参考博客:http://blog.csdn.net/napoleon_acm/article/details/40020297 题意:给定n*m的空棋盘 每一次在上面选择一个空的位置放置一枚 ...
- zoj 3640 Help Me Escape 概率DP
记忆化搜索+概率DP 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #include ...
- ZOJ 3822 Domination(概率dp 牡丹江现场赛)
题目链接:problemId=5376">http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5376 Edward ...
随机推荐
- 旋转3D立方体
<!DOCTYPE html><html><head> <title>css-3d-盒子</title> <meta charset= ...
- 85.Maximal Rectangle---dp
题目链接:https://leetcode.com/problems/maximal-rectangle/description/ 题目大意:给出一个二维矩阵,计算最大的矩形面积(矩形由1组成).例子 ...
- Enumeration的学习
枚举是jdk5.0之后的新特性.枚举的使用在编程中能起到很大的作用,本文从枚举的适用范围.枚举的特点.枚举的使用等三个方面学习枚举 一.枚举的使适用范围 “在有限的范围内选择值”:比如一个星期只有星期 ...
- freemarker模板引擎的使用
freemarker是一套前端模板引擎,在使用时,要先在web项目中添加freemarker.jar的依赖. 我在这里主要演示spring-mvc整合freemarker模板引擎.项目案例的文件包结构 ...
- JSP基础与提高(一).md
JSP基础 JSP的由来 1.1. 为什么有JSP规范 Servlet技术产生以后,在使用过程中存在一个很大的问题,即为了表现页面的效果而需要输出大量的HTML标签,这些标签在Servlet中表现为一 ...
- CGIC简明教程(转摘)
CGIC简明教程 本系列的目的是演示如何使用C语言的CGI库“CGIC”完成Web开发的各种要求. ********************************* 基础知识 1 ...
- Java显式锁学习总结之三:AbstractQueuedSynchronizer的实现原理
概述 上一篇我们讲了AQS的使用,这一篇讲AQS的内部实现原理. 我们前面介绍了,AQS使用一个int变量state表示同步状态,使用一个隐式的FIFO同步队列(隐式队列就是并没有声明这样一个队列,只 ...
- Python+Selenium 自动化实现实例-实现文件下载
#coding=utf-8 from selenium import webdriver #实例化一个火狐配置文件 fp = webdriver.FirefoxProfile() #设置各项参数,参数 ...
- python中list的底层实现
这里不讨论具体的实现细节,主要是转载这篇文章: 顺序表的原理与python中的list类型. 原文就不贴过来了,总结一下: 确定数据类型的意义在于确定一个数据在内存中占据的空间大小以及如何解释一段内存 ...
- AC日记——[USACO5.4]奶牛的电信Telecowmunication 洛谷 P1345
[USACO5.4]奶牛的电信Telecowmunication 思路: 水题: 代码: #include <cstdio> #include <cstring> #inclu ...