记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式:

(右键点击在新页面打开,可查看清晰图像)

简单版:

precision = TP / (TP + FP)   # 预测为正的样本中实际正样本的比例
recall = TP / (TP + FN) # 实际正样本中预测为正的比例
accuracy = (TP + TN) / (P + N)
F1-score = / [( / precision) + ( / recall)]
from sklearn.metrics import accuracy_score, precision_score, recall_score

def cul_accuracy_precision_recall(y_true, y_pred, pos_label=1):
return {"accuracy": float("%.5f" % accuracy_score(y_true=y_true, y_pred=y_pred)),
"precision": float("%.5f" % precision_score(y_true=y_true, y_pred=y_pred, pos_label=pos_label)),
"recall": float("%.5f" % recall_score(y_true=y_true, y_pred=y_pred, pos_label=pos_label))}

***********************************************************************************************************************************

(下面写的内容纯属个人推导,如有错误,望指正)

一般来说,精度和召回率是针对具体类别来计算的,例如:

precision(c1) = TP(c1) / Pred(c1) = TP(c1) / [TP(c1) + FP(c2=>c1) + FP(c3=>c1)]
recall(c1) = TP(c1) / True(c1) = TP(c1) / [TP(c1) + FP(c1=>c2) + FP(c1=>c3)]

有时需要衡量模型的整体性能,有:

total_precision = sum[TP(ci)] / sum[Pred(ci)] = [TP(c1) + TP(c2) + TP(c3)] / len(Pred)
total_recall = sum[TP(ci)] / sum[True(ci)] = [TP(c1) + TP(c2) + TP(c3)] / len(True)
total_accuracy = sum[TP(ci)] / total_num = [TP(c1) + TP(c2) + TP(c3)] / total_num

其中i取值自[1,2,...,n]

到这里很惊讶地发现,针对整体而言,一般有 len(Pred) == len(True) == total_num

也就是说, total_precision == total_recall == total_accuracy ,所以衡量模型整体性能用其中一个就可以了

针对概率输出型的的模型,很多时候会通过设置阈值梯度,得到映射关系 F(threshold) ==> (precision, recall) 
在卡阈值的情况下,除了total_precision,还可以计算一个广义召回率

generalized_recall =  sum[TP(ci)] / sum[True(ci)] = [TP(c1) + TP(c2) + TP(c3)] / [len(True) + OutOfThreshold]

其中OutOfThreshold表示因低于指定阈值而被筛选去掉的样本数。

参考:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://www.cnblogs.com/shixiangwan/p/7215926.html?utm_source=itdadao&utm_medium=referral

评价指标的计算:accuracy、precision、recall、F1-score等的更多相关文章

  1. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  2. Precision,Recall,F1的计算

    Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...

  3. 机器学习基础梳理—(accuracy,precision,recall浅谈)

    一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签 ...

  4. BERT模型在多类别文本分类时的precision, recall, f1值的计算

    BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...

  5. 目标检测的评价标准mAP, Precision, Recall, Accuracy

    目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...

  6. Classification week6: precision & recall 笔记

    华盛顿大学 machine learning :classification  笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...

  7. 机器学习中的 precision、recall、accuracy、F1 Score

    1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...

  8. 【tf.keras】实现 F1 score、precision、recall 等 metric

    tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...

  9. 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy

    针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy   真实结果 1 ...

随机推荐

  1. Python for循环文件

    for 循环遍历文件:打印文件的每一行 #!/usr/bin/env python fd = open('/tmp/hello.txt') for line in fd: print line, 注意 ...

  2. 谈谈let与const

    let 命令 let命令用于声明变量,但是与传统var命令的不同之处在于拥有以下特性: 使用let命令声明的变量只在let命令所在的代码块内有效(我将之称为变量绑定): 不存在变量提升: 存在暂时性死 ...

  3. SpringBoot ApplicationRunner/CommandLineRunner

    CommandLineRunner.ApplicationRunner 接口是在容器启动成功后的最后一步回调(类似开机自动启动). CommandLineRunner.ApplicationRunne ...

  4. Mac系统安装MyEclipse

    参考链接 http://blog.csdn.net/jin_kwok/article/details/51925523

  5. POJ-2418 Hardwood Species(二叉搜索树)

    思路就是先将每个单词存进二叉树中,没出现一次,修改该单词所在结点的cnt++: 最后通过递归中序遍历输出结果. 思路很清晰,主要注意一下指针的使用,想一想为什么要这么用? 简单的解释就是,insert ...

  6. pt-table-sync修复mysql主从不一致的数据

    pt-table-sync简介 顾名思义,它用来修复多个实例之间数据的不一致.它可以让主从的数据修复到最终一致,也可以使通过应用双写或多写的多个不相关的数据库实例修复到一致.同时它还内部集成了pt-t ...

  7. 【ML数学知识】极大似然估计

    它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现 ...

  8. 02_zookeeper集群安装

    zookeeper集群安装 (1)   下载zookeeper安装包,并上传到要组成zookeeper集群的多个机器上 我放置的目录:/usr/local/src/zookeeper-3.4.5.ta ...

  9. webjars-jquery的引用

    什么是WebJars WebJars以jar包的形式来使用前端的各种框架.组件,如jquery.bootstrap WebJars将客户端(浏览器)资源(JavaScript,Css等)打成jar包文 ...

  10. [Vue]使用 vue-i18n 切换中英文

    1.引入 vue-i18n  import Vue from 'vue' import VueI18n from 'vue-i18n' import merge from 'lodash/merge' ...