评价指标的计算:accuracy、precision、recall、F1-score等
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式:

(右键点击在新页面打开,可查看清晰图像)
简单版:

precision = TP / (TP + FP) # 预测为正的样本中实际正样本的比例
recall = TP / (TP + FN) # 实际正样本中预测为正的比例
accuracy = (TP + TN) / (P + N)
F1-score = / [( / precision) + ( / recall)]
from sklearn.metrics import accuracy_score, precision_score, recall_score def cul_accuracy_precision_recall(y_true, y_pred, pos_label=1):
return {"accuracy": float("%.5f" % accuracy_score(y_true=y_true, y_pred=y_pred)),
"precision": float("%.5f" % precision_score(y_true=y_true, y_pred=y_pred, pos_label=pos_label)),
"recall": float("%.5f" % recall_score(y_true=y_true, y_pred=y_pred, pos_label=pos_label))}
***********************************************************************************************************************************
(下面写的内容纯属个人推导,如有错误,望指正)

一般来说,精度和召回率是针对具体类别来计算的,例如:
precision(c1) = TP(c1) / Pred(c1) = TP(c1) / [TP(c1) + FP(c2=>c1) + FP(c3=>c1)]
recall(c1) = TP(c1) / True(c1) = TP(c1) / [TP(c1) + FP(c1=>c2) + FP(c1=>c3)]
有时需要衡量模型的整体性能,有:
total_precision = sum[TP(ci)] / sum[Pred(ci)] = [TP(c1) + TP(c2) + TP(c3)] / len(Pred)
total_recall = sum[TP(ci)] / sum[True(ci)] = [TP(c1) + TP(c2) + TP(c3)] / len(True)
total_accuracy = sum[TP(ci)] / total_num = [TP(c1) + TP(c2) + TP(c3)] / total_num
其中i取值自[1,2,...,n]
到这里很惊讶地发现,针对整体而言,一般有 len(Pred) == len(True) == total_num
也就是说, total_precision == total_recall == total_accuracy ,所以衡量模型整体性能用其中一个就可以了
针对概率输出型的的模型,很多时候会通过设置阈值梯度,得到映射关系 F(threshold) ==> (precision, recall)
在卡阈值的情况下,除了total_precision,还可以计算一个广义召回率:
generalized_recall = sum[TP(ci)] / sum[True(ci)] = [TP(c1) + TP(c2) + TP(c3)] / [len(True) + OutOfThreshold]
其中OutOfThreshold表示因低于指定阈值而被筛选去掉的样本数。
参考:
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://www.cnblogs.com/shixiangwan/p/7215926.html?utm_source=itdadao&utm_medium=referral
评价指标的计算:accuracy、precision、recall、F1-score等的更多相关文章
- 机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...
- Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negati ...
- 机器学习基础梳理—(accuracy,precision,recall浅谈)
一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签 ...
- BERT模型在多类别文本分类时的precision, recall, f1值的计算
BERT预训练模型在诸多NLP任务中都取得最优的结果.在处理文本分类问题时,即可以直接用BERT模型作为文本分类的模型,也可以将BERT模型的最后层输出的结果作为word embedding导入到我们 ...
- 目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 A ...
- Classification week6: precision & recall 笔记
华盛顿大学 machine learning :classification 笔记 第6周 precision & recall 1.accuracy 局限性 我们习惯用 accuracy ...
- 机器学习中的 precision、recall、accuracy、F1 Score
1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...
- 【tf.keras】实现 F1 score、precision、recall 等 metric
tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...
- 评价指标整理:Precision, Recall, F-score, TPR, FPR, TNR, FNR, AUC, Accuracy
针对二分类的结果,对模型进行评估,通常有以下几种方法: Precision.Recall.F-score(F1-measure)TPR.FPR.TNR.FNR.AUCAccuracy 真实结果 1 ...
随机推荐
- Btrace使用入门
1.什么是BTrace BTrace是sun公司推出的一款Java 动态.安全追踪(监控)工具,可以在不用重启的情况下监控系统运行情况,方便的获取程序运行时的数据信息,如方法参数.返回值.全局变量和堆 ...
- 从零开始玩转JMX(一)——简介和Standard MBean
JMX的全称为Java Management Extensions. 顾名思义,是管理Java的一种扩展.这种机制可以方便的管理.监控正在运行中的Java程序.常用于管理线程,内存,日志Level,服 ...
- 7.scala:继承
版权申明:转载请注明出处. 文章来源:http://bigdataer.net/?p=315 排版乱?请移步原文获得更好的阅读体验 类似于java中的继承,在scala中同样有继承一说,而且在很多方面 ...
- /nagios/cgi-bin/cmd.cgi无法打开
原因分析,nginx不支持post. 解决方法,重新编译nagios 1.vi /nagios-4.0.8/cgi/cmd.c 找到printf("<form method='post ...
- Python基础笔记系列十三:socket网络编程
本系列教程供个人学习笔记使用,如果您要浏览可能需要其它编程语言基础(如C语言),why?因为我写得烂啊,只有我自己看得懂!!使用python编写一个简易的服务端程序和客户端程序,启动服务端和客户端(监 ...
- (asp.net)百度浏览器Cookie的神奇bug
HttpCookie cookie = new HttpCookie("version"); cookie.Value = "1.1"; cookie.Expi ...
- iOS 可变字符串NSMutableString的使用
.创建一个可变字符串 NSMutableString * ms1 = [[NSMutableString alloc]init]; .可以通过类方法来创建 NSMutableString * ms2 ...
- no crontab for root 解决方案
root用户下 输入 crontab -l 显示 no crontab for root 例如: [root@localhost ~]# crontab -l no crontab for root ...
- phalcon: dispatcher->forward地址转发/重定向
比如,我indexController里面的indexAction,因为用户没有穿参数,我要重定向到 errorAction里面 $this->dispatcher->forward(ar ...
- 常数PK系列汇总
常数PK系列说明: 在AC的情况下得分=\(\sum_{i=1}^{10}{1000-runtime\_on\_point_i}\) RE会显示UKE UPD:之前的数据太水,导致好多题都在9000分 ...