LINK

题意:给出一个多边形,求是否存在核。

思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了

/** @Date    : 2017-07-20 19:55:49
* @FileName: POJ 3335 半平面交求核.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <algorithm>
#include <utility>
#include <vector>
#include <map>
#include <set>
#include <string>
#include <stack>
#include <queue>
#include <math.h>
//#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; struct point
{
double x, y;
point(){}
point(double _x, double _y){x = _x, y = _y;}
point operator -(const point &b) const
{
return point(x - b.x, y - b.y);
}
double operator *(const point &b) const
{
return x * b.x + y * b.y;
}
double operator ^(const point &b) const
{
return x * b.y - y * b.x;
}
}; double xmult(point p1, point p2, point p0)
{
return (p1 - p0) ^ (p2 - p0);
} double distc(point a, point b)
{
return sqrt((double)((b - a) * (b - a)));
}
int sign(double x)
{
if(fabs(x) < eps)
return 0;
if(x < 0)
return -1;
else
return 1;
}
//////
point p[N], stk[N], t[N]; //两点确定直线系数
void getlinePara(point x, point y, double &a, double &b, double &c)
{
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
} void init(int n)//感觉没意义的初始化
{
for(int i = 0; i < n; i++)
stk[i] = p[i];
} point interPoint(point x, point y, double a, double b, double c)
{
double s = fabs(a * x.x + b * x.y + c);
double t = fabs(a * y.x + b * y.y + c);
double xx = (x.x * t + y.x * s) / (s + t);
double yy = (x.y * t + y.y * s) / (s + t);
return point(xx, yy);
} int cut(int n, double a, double b, double c)
{
int cnt = 0;
for(int i = 0; i < n; i++)//求所有顶点的划分得到的交点
{
if(sign(a * stk[i].x + b * stk[i].y + c) >= 0)
t[cnt++] = stk[i];
else {
if(sign(a*stk[(i-1+n)%n].x + b*stk[(i-1+n)%n].y + c)> 0)
t[cnt++] = interPoint(stk[i], stk[(i-1+n)%n], a, b, c);
if(sign(a*stk[(i+1)%n].x + b*stk[(i+1)%n].y + c) > 0)
t[cnt++] = interPoint(stk[i], stk[(i+1)%n], a, b, c);
}
}
for(int i = 0; i < cnt; i++)//从临时数组取出
stk[i] = t[i];
return cnt;//返回核的顶点数
} int main()
{
int T;
cin >> T;
while(T--)
{
int n;
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
double x, y;
scanf("%lf%lf", &x, &y);
p[i] = point(x, y);
}
init(n);
int m = n;
for(int i = 0; i < n; i++)
{
double a, b, c;
getlinePara(p[i], p[(i + 1)%n], a, b, c);
m = cut(m, a, b, c);
//cout << m << endl;
}
printf("%s\n", m>0?"YES":"NO");
}
return 0;
}

POJ 3335 Rotating Scoreboard 半平面交求核的更多相关文章

  1. poj 3335 Rotating Scoreboard - 半平面交

    /* poj 3335 Rotating Scoreboard - 半平面交 点是顺时针给出的 */ #include <stdio.h> #include<math.h> c ...

  2. poj 3335 Rotating Scoreboard(半平面交)

    Rotating Scoreboard Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6420   Accepted: 25 ...

  3. POJ 3335 Rotating Scoreboard(半平面交求多边形核)

    题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...

  4. POJ 3130 How I Mathematician Wonder What You Are! /POJ 3335 Rotating Scoreboard 初涉半平面交

    题意:逆时针给出N个点,求这个多边形是否有核. 思路:半平面交求多边形是否有核.模板题. 定义: 多边形核:多边形的核可以只是一个点,一条直线,但大多数情况下是一个区域(如果是一个区域则必为 ).核内 ...

  5. poj 3335 Rotating Scoreboard (Half Plane Intersection)

    3335 -- Rotating Scoreboard 给出一个多边形,要求判断它的内核是否存在. 还是半平面交的题,在这道题中,公告板允许其所在位置与直线共线也算是可见,于是我们就可以将每一条直线微 ...

  6. POJ 3335 Rotating Scoreboard(半平面交 多边形是否有核 模板)

    题目链接:http://poj.org/problem? id=3335 Description This year, ACM/ICPC World finals will be held in a ...

  7. poj 3335 /poj 3130/ poj 1474 半平面交 判断核是否存在 / poj1279 半平面交 求核的面积

    /*************** poj 3335 点序顺时针 ***************/ #include <iostream> #include <cmath> #i ...

  8. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  9. POJ - 1474 :Video Surveillance (半平面交-求核)

    pro:顺时针给定多边形,问是否可以放一个监控,可以监控到所有地方,即问是否存在多边形的核. 此题如果两点在同一边界上(且没有被隔段),也可以相互看到. sol:求多边形是否有核.先给直线按角度排序, ...

随机推荐

  1. 18软工实践-第八次作业(课堂实战)-项目UML设计(团队)

    目录 团队信息 分工选择 课上分工 课下分工 ToDolist alpha版本要做的事情 燃尽图 UML 用例图 状态图 活动图 类图 部署图 实例图 对象图 时序图 包图 通信图 贡献分评定 课上贡 ...

  2. iOS-封装UIPickerView

    创建类WJPickerView继承与UIView ProvinceModel是省市的model,包含属性 @property (nonatomic, strong) NSString *provinc ...

  3. Hibernate(九)

    三套查询之SQL查询 Native Sql Query原生的sql查询.要求写sql语句.SQLQuery 是 Query的子类 1.查询所有的学生 //1.查询所有的学生 @Test public ...

  4. selenium Object Page 设计模式理解及实现!

    Page Object模式是Selenium中的一种测试设计模式,主要是将每一个页面设计为一个Class,其中包含页面中需要测试的元素(按钮,输入框,标题 等),这样在Selenium测试页面中可以通 ...

  5. rem和em学习笔记及CSS预处理

    1.当元素A的字体单位是n rem时,它将根据根元素(html)的font-size的大小作为基准,比如   parent-div中的em-div的font-size为2rem,他的基准就是html的 ...

  6. Web服务器负载均衡的几种方案 : DNS轮询

    本篇主要讲一下最简单的方案——DNS轮询. DNS轮询 大多域名注册商都支持多条A记录 的解析,其实这就是DNS轮询 ,DNS 服务器 将解析请求按照A记录 的顺序,逐一分配到不同的IP上,这样就完成 ...

  7. AngularJS中$apply

    $apply是$scope下的特性,传播model的变化.下面的例子两秒之后控制台会显示出已经更新的model, 然而, view 并没有更新.$digest循环不会只运行一次.在当前的一次循环结束后 ...

  8. 51nod 1292 字符串中的最大值V2(后缀自动机)

    题意: 有一个字符串T.字符串S的F函数值可以如下计算:F(S) = L * S在T中出现的次数(L为字符串S的长度).求所有T的子串S中,函数F(S)的最大值. 题解: 求T的后缀自动机,然后所有每 ...

  9. Django之CSS,JS静态文件的配置

    一. 专门创建一个目录放静态文件,即CSS,JS等. 1)先把jquery.min拿过来. 2)新建一个CSS文件放入样式 3)在login.html中引入.css文件 在login.html中引入. ...

  10. 【洛谷】CYJian的水题大赛【第二弹】解题报告

    点此进入比赛 T1: JerryC Loves Driving 第一题应该就是一道水分题(然而我只水了130分),我的主要做法就是暴力模拟,再做一些小小的优化(蠢得我自己都不想说了). My Code ...