题目

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

分析

莫比乌斯经典入门题。

(我也刚学,就写一下

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const int maxn = + ;
int mu[maxn], prime[maxn], tot; //莫比乌斯表、素数表,素数个数
bool vis[maxn];
int premu[maxn]; //莫比乌斯的前缀和 void getMu(int n)
{
mu[]=;
for(int i = ;i <= n;i++)
{
if(!vis[i]) prime[++tot] = i, mu[i] = -;
for(int j = ;j <= tot && (ll)i * prime[j] <= n;j++)
{
vis[i * prime[j]] = true;
if(i % prime[j] == )
{
mu[i * prime[j]] = ;
break;
}
mu[i * prime[j]] = -mu[i];
}
}
for(int i = ;i <= n;i++) premu[i] = premu[i-] + mu[i];
} //1≤i≤n, 1≤j≤m, \sigma[gcd(i,j)=1]
int solve(int n, int m)
{
int res=;
for(int i=,j;i <= min(n,m);i = j+)
{
j = min(n/(n/i), m/(m/i));
res += (premu[j]-premu[i-]) * (n/i) * (m/i);
}
return res;
} int a, b, c, d, k; int main()
{
getMu(maxn);
int T;
scanf("%d", &T);
while(T--)
{
scanf("%d%d%d%d%d", &a, &b, &c, &d, &k);
printf("%d\n", solve(b/k, d/k) - solve((a-)/k, d/k) - solve(b/k, (c-)/k) + solve((a-)/k, (c-)/k));
}
return ;
}

BZOJ2301——莫比乌斯&&整除分块的更多相关文章

  1. P2257 莫比乌斯+整除分块

    #include<bits/stdc++.h> #define ll long long using namespace std; ; int vis[maxn]; int mu[maxn ...

  2. [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)

    [POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...

  3. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  4. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  5. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  6. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  7. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

  8. 洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么 ...

  9. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

随机推荐

  1. python学习——while True的用法

    在学习过程中,经常能遇到采用while True的用法.下面以一个例子进行说明: 建立一个用户登录系统,用户输入用户名和密码,如果正确就可以进入系统. 1.我自己最开始的写法: d = {} #数据库 ...

  2. nginx设置导航&安装showdoc&创建文件服务&zabbix&grafana

    安装环境: [root@nginx showdoc]# cat /etc/centos-release #系统版本 CentOS Linux release 7.5.1804 (Core) [root ...

  3. Scratch2.0教材(9)——合体大变身

    教材说明 ——————— 1.本教材共96节课,适用于3-5年级.40人.40分钟的课堂: 2.初期我会把每节课的代码控制在10行以内,后期再逐渐增加: 3.欢迎提意见. 课程摘要 ——————— [ ...

  4. java代码检出打包

    这里先提下前提,就是有个维护的(可能有二期的一个项目),后端是Java,由于很久都不做Java,剩下的只是不多了.之前做的Java容器要么是tomcat,要么接触过新的spring cloud.从来没 ...

  5. (十五)Activitivi5之多用户任务分配

    一.概念 我们在开发的时候,有一种情况是这样的, 我们有一个任务,可以让多个用户中的任何一个人办理即可,比如某个审批任务, 张三,李四,王五他们中的任何一人办理下都行,这时候,我们用到多用户任务分配. ...

  6. android 和 js 交互

    1.html代码 <script type="text/javascript"> function javacalljs(){ document.getElementB ...

  7. Uwl.Admin开源框架(二)

    Uwl.Admin开源框架基于QuartzNet定时任务模块的实现 Quartz.NET官网地址:https://www.quartz-scheduler.net/ Quartz.NET文档地址:ht ...

  8. [JZOJ5465]道路重建--边双缩点+树的直径

    题目链接 lueluelue 分析 这鬼题卡了我10发提交,之前做过一道类似的题目:https://rye-catcher.github.io/2018/07/09/luogu%E9%A2%98%E8 ...

  9. bat实现监控进程守护程序-保证平台服务的稳定执行

    背景是平台所在的服务器经常因异常原因导致当前机器所在的服务关闭....直接贴代码吧. ********************************************************* ...

  10. 搭建nginx静态资源站

    搭建静态资源站包括以下几部分: root指令与alias指令的区别 使用gzip压缩资源 如何访问指定目录下的全部资源文件 如何限制访问流量 如何自定义log日志 root指令与alias指令的区别 ...