1.原理图



2.芯片手册

3.几条汇编代码

1.ldr:读内存
ldr R0, [R1]
假设R1的值是x,读取地址x上的数据(4字节),保存到R0中
ldr R0, =0x12345678 (4字节)
R0 = 0x12345678 此语句是伪指令,它会被分为几条真正的ARM指令
2.str:写内存命令
str R0, [R1]
假设R1的值是x,把R0的值写到地址x(4字节)
3.b:跳转
4.mov:
mov R0, R1 把R1的值赋给R0,R0 = R1
mov R0, #0x100 R0 = 0x100 (#0x100立即数)
注意:
mov R0, =0x12345678 不可,mov只能表示简单值(被称为立即数)
而ldr R0, =任意值
5.
add r0, r1, #4 r0 = r1 + 4
sub r0, r1, #4 r0 = r1 - 4
sub r0, r1, r2 r0 = r1 - r2
6.bl:跳转
bl xxx
跳转到xxx,把返回地址保存在lr寄存器(下一条指令的地址)
7.ldm:读内存,写入多个寄存器
stm:把多个寄存器的值写入内存
ldm: ia:内存过后增加 ib:内存预先增加
stm: da:内存过后减少 db:内存预先减少 stmdb sp!, {fp, ip, lr, pc} 假设:sp = 4096
R11 R12 R14 R15 高编号在高地址
解析:
!:被修改的sp不为原始值,为加减后的值

    ldmia sp, {fp, sp, pc}        假设:sp = 4080
解析:
无!,修改后的地址值不存入sp中

4.汇编代码

/*
* 点亮led
*/ .text
.global _start
_start: /* 配置gpf4为输出引脚
* 把0x100写到地址0x56000050
*/
ldr r1, = 0x0x56000050
ldr r0, = 0x100
str r0, [r1] /* 设置gpf4输出高电平
* 把0x10写到地址0x56000054
*/
ldr r1, = 0x56000054
ldr r0, = 0x10
str r0, [r1] /*死循环*/
halt:
b halt

解析:

1:.text部分是处理器开始执行代码的地方,指定了后续编译出来的内容放在代码段【可执行】,是arm-gcc编译器的关键字
2:.global关键字用来让一个符号对链接器可见,可以供其他链接对象模块使用;告诉编译器后续跟的是一个全局可见的名字【可能是变量,也可能是函数名】
3:.global _start让_start符号成为可见符号,这样链接器就知道跳转到程序的什么地方并开始执行
4:_start是默认起始地址,也是编译,链接后程序的起始地址,由于程序是通过加载器来加载的,必须要找到_start名字的函数,因此_start必须定义成全局的,以便存在于编译后的全局符合表中,供其它程序【如加载器】寻找到

Makefile

all:
arm-linux-gcc -c -o led_on.o led_on.S
arm-linux-ld -Ttext 0 led_on.o -o led_on.elf
arm_linux-objcopy -O binary -S led_on.elf led_on.bin clean:
rm *.bin *.o *.elf

5.寄存器

cup:可直接访问的寄存器

r0-r3:参数结果寄存器。可以用来传参数
r4-r11:可以参与程序的操作。如果使用到了它们,则需要在函数的入口保存它们,在函数的出口恢复它们
sp:栈指针
lr:用来保存返回地址
pc:程序计数器。当把一个地址写到pc时,cpu会跳到地址去执行。pc的值为当前地址 + 8

其他寄存器需要通过地址来访问

6.ARM三级流水线

PC=当前指令+8

流水线结构:

当前执行地址A的地址
已经在对地址A + 4的指令进行译码了
已经在读取地址A + 8的指令(pc的值)

7.2440启动流程

NOR启动

nor启动的时候,nor flash自身地址为0,片内4KRAM为0x4000 0000
程序直接在nor上读取,运行
nor能够像内存一样的读取,但不能直接写

NAND启动

片内4KRAM的地址为0x0000 0000,nor flash不可见
自动复制Nand前4K的程序到片内RAM中运行

堆栈设置:(栈区用来保存寄存器和局部变量)

NOR启动

 sp = 0x40000000 + 4096

NAND启动

sp = 4096

自动判断NOR启动还是NAND启动

先读出0地址的值,在写0到0地址后,读出0地址中的值。
如果读出来的值和写入的值不一样。表示0地址上的值被修改了,它对应ram地址为0x0000 0000,为NAND启动。否则为NOR启动
最后要把0地址的值复原

8.C语言代码

start.S

.text
.global _start
_start: /* 设置内存: sp栈 */
ldr sp, =4096 /* NAND启动 */
//ldr sp, =0x40000000 + 4096 /* NOR启动 */ /* 调用main函数 */
bl main halt:
b halt

led.c

int main()
{
unsigned int* pGPFCON = (unsigned int*)0x56000050;
unsigned int* pGPFDAT = (unsigned int*)0x56000054; /* 配置GPF4为输出引脚 */
*pGPFCON = 0x100; /* 配置GPF4为输出为0 */
*pGPFDAT = 0; return 0;
}

Makefile

all:
arm-linux-gcc -c -o led.o led.c
arm-linux-gcc -c -o start.o start.S
arm_linux-ld -Ttext 0 start.o led.o -o led.elf
arm-linux-objcopy -O binary -S led.elf led.bin
arm-linux-objdump -D led.elf > led.dis clean:
rm *.o *.elf *.bin *.dis

解析:

arm-linux-objdump -D led.elf > led.dis

这句意义是生成反汇编文件,用于查看和分析

9.ATPCS规则

这里直接引用别人的文章

https://www.cnblogs.com/zongzi10010/p/10023531.html

10.栈区存储示意图

栈顶存储寄存器和局部变量

栈底存储代码段(未重定义前,代码都存储在RAM中只能接受4k的代码)

11.延时点亮LED

start.S

.text
.global _start
_start: ldr r0, = 4096 /* NAND 启动 */ mov r0, #4
bl led_on ldr r0, =10000
bl delay mov r0, #5
bl led_on halt:
b halt

解析:

这里使用到了r0-r3可以传递参数的功能

led.c

void delay(int i)
{
while(i--);
} int led_on(int which)
{
/* 配置地址 */ unsigned int *pGPFCON = (unsigned int *)0x56000050;
unsigned int *pGPFDAT = (unsigned int *)0x56000054; if(which == 4)
{ /* 配置GPF4为输出 */ *pGPFCON = 0x100;
}
else if(which == 5)
{ /* 配置GPF5为输出 */ *pGPFCON = 0x500;
}
/* 配置GPF4和GPF5输出为0 */ *pGPFDAT = 0; return 0; }

12.看门狗

汇编代码

/*    关闭看门狗    */
ldr r0, =0x53000000
ldr r1, =0
str r1, [r0]

13.自动判断NOR启动还是NAND启动

汇编代码

/* 设置内存: sp 栈 */
/* 分辨是nor/nand启动
* 写0到0地址, 再读出来
* 如果得到0, 表示0地址上的内容被修改了, 它对应ram, 这就是nand启动
* 否则就是nor启动
*/
mov r1, #0
ldr r0, [r1] /* 读出原来的值备份 */
str r1, [r1] /* 0->[0] */
ldr r2, [r1] /* r2=[0] */
cmp r1, r2 /* r1==r2? 如果相等表示是NAND启动 */
ldr sp, =0x40000000 + 4096 /* 先假设是nor启动 */
moveq sp, #4096 /* nand启动 */
streq r0, [r1] /* 恢复原来的值 */

解析:

moveq:cmp r1, r2相等时执行
streq:cmp r1, r2相等时执行

14.按键控制LED

原理图

led.c

#include "s3c2440_soc.h"

void delay(volatile int d)
{
while(i--);
} int main(void)
{
int val1, val2; /* 设置GPFCON让GPF4/5/6配置为输出引脚 */
GPFCON &= ~((3<<8) | (3<<10) | (3<<12)); // 清零
GPFCON |= ((1<<8) | (1<<10) | (1<<12)); /* 配置3个按键引脚为输入引脚:
* GPF0(S2),GPF2(S3),GPG3(S4)
*/
GPFCON &= ~((3<<0) | (3<<4)); /* gpf0,2 */
GPGCON &= ~((3<<6)); /* gpg3 */ /* 循环点亮 */
while (1)
{
val1 = GPFDAT;
val2 = GPGDAT; if (val1 & (1<<0)) /* s2 --> gpf6 */
{
/* 松开 */
GPFDAT |= (1<<6);
}
else
{
/* 按下 */
GPFDAT &= ~(1<<6);
} if (val1 & (1<<2)) /* s3 --> gpf5 */
{
/* 松开 */
GPFDAT |= (1<<5);
}
else
{
/* 按下 */
GPFDAT &= ~(1<<5);
} if (val2 & (1<<3)) /* s4 --> gpf4 */
{
/* 松开 */
GPFDAT |= (1<<4);
}
else
{
/* 按下 */
GPFDAT &= ~(1<<4);
} } return 0;
}

ARM指令集百度云文档:

https://pan.baidu.com/s/1E2JhzBlJHgLbZ7hqZWmXIw

第8课.第一个ARM裸板程序(点亮led)及申引的更多相关文章

  1. 【arm学习】我的第一个裸板程序

    初学ARM感觉写个裸板程序还真的不容易,可能是没有用到ADS,keil之类的开发平台的缘故吧.编译,链接过程在linux平台上完成,这样学起来更有实感,还能顺便熟悉linux环境,以及命令,何乐而不为 ...

  2. ARM裸板开发:04_MMU 链接地址与运行地址不一致时,(SDRAM)初始化程序地址无关码问题的分析

    ARM裸板开发过程,程序的链接地址设置为为0x30000000,而前期的启动代码以及相关硬件的初始化代码需要在内部iRAM(steppingstone,起始地址0x0)的4K中运行.链接地址与运行地址 ...

  3. 关于在arm裸板编程时使用printf问题的解决方法

    在ARM裸板驱动编程中,是不允许程序直接调用C库程序的.为什么呢?因为此时kernel还没有被加载,所以在封装在kernel层的C库的API是用不了的,那怎么办? 在开发过程中,printf的功能我不 ...

  4. 6410裸板程序,led、蜂鸣器、按键…

    //***************************************************************** //作者:昊天 // //功能:在ok6410板子上跑裸板程序, ...

  5. arm裸板驱动总结(makefile+lds链接脚本+裸板调试)

    在裸板2440中,当我们使用nand启动时,2440会自动将前4k字节复制到内部sram中,如下图所示: 然而此时的SDRAM.nandflash的控制时序等都还没初始化,所以我们就只能使用前0~40 ...

  6. ARM裸板开发:07_IIC 通过IIC总线接口读写时钟芯片时间参数实现的总结

    问题一:程序直接在iRAM内部可正常执行,而程序搬移(Nand ->SDRAM)之后,就不能正常运行了 #define NAND_SECTOR_SIZE 2048 /* 读函数 */ void ...

  7. ARM学习篇一 点亮LED

    要点亮LED,先决条件是什么,当然得有相应的硬件设施.板子的整个电路图比较大,我就直接取相关部分. 给发光二级管加上3.3v电压后,通过1k电阻,直接与S3C2440连接.至于为什么要加电阻,大家应该 ...

  8. 对arm裸板调试的理解

    由于arm芯片一般都包含的由jtag调试这项功能,cpu向外部发出信号时,一般都要同jtag发送出去,它就像一个路口的交警一样,能够控制车辆的运行,当然在arm中指的是cpu发出的数据和地址,我们在调 ...

  9. ARM裸板调试思路总结、笔记

    1. 点灯 2. 串口打印 3. JTAG调试器3.1 命令行调试 3.2 源码级别的调试前提a. 程序必须已经重定位好,位于它的链接地址a.1 如果程序的链接地址是SDRAM, 使用openocd初 ...

随机推荐

  1. P4310 绝世好题 按位DP

    这名字可海星\(OvO\) 思路:\(DP\) 提交:2次(\(zz\)我竟然把三目运算符写错了\(QwQ\)) 题解: 按位进行\(DP\):\(f[i]\)表示结尾的数字包括\(1<< ...

  2. [Luogu P4145] 上帝造题的七分钟2 / 花神游历各国

    题目链接 题目简要:我们需要一个能支持区间内每一个数开方以及区间求和的数据结构. 解题思路:说道区间修改区间查询,第一个想到的当然就是分块线段树.数据范围要用long long.本来我是看到区间这两个 ...

  3. Flutter布局4--Row

    Row 简介 mainAxisAlignment:主轴布局方式,row主轴方向是水平方向 crossAxisAlignment: 交叉轴的布局方式,对于row来说就是垂直方向的布局方式 Row 是一个 ...

  4. BigDecimal 3个toString()方法区别

    BigDecimal 的toEngineeringString.toPlainString和toString方法的区别: toEngineeringString:有必要时使用工程计数法.工程记数法是一 ...

  5. LibreOJ #119. 最短路

    二次联通门 : LibreOJ #119. 最短路 /* LibreOJ #119. 最短路 堆优化的Dijkstra */ #include <cstring> #include < ...

  6. java 内部类简单总结

    在java中,一个类可以放在另一个类的内部,称之为内部类,相对而言,包含它的类称之为外部类.不过对于Java虚拟机而言,它是不知道内部类这回事的, 每个内部类最后都会被编译为一个独立的类,生成一个独立 ...

  7. ++a和a++不是左值

    上面的编译时会出现一下错误: aplus2.c:6:6: error: lvalue required as left operand of assignmentaplus2.c:7:6: error ...

  8. codeforces814E

    https://lunch.blog.luogu.org/cf814e-an-unavoidable-detour-for-homedp-ji-shuo-post https://blog.csdn. ...

  9. mysql 查询整个数据库所有表的行数

    >use information_schema; >select sum(table_rows) from tables where TABLE_SCHEMA = "test&q ...

  10. msql数据库常用指令操作

    数据库指令 1.数据库指令 创建数据库:create database db_name; 删除数据库:drop database db_name; 显示数据库:show databases: 导出数据 ...