[CF544D]Destroying Roads_最短路_bfs
D. Destroying Roads
题目大意:
In some country there are exactly n cities and m bidirectional roads connecting the cities. Cities are numbered with integers from 1 to n. If cities a and b are connected by a road, then in an hour you can go along this road either from city a to city b, or from city b to city a. The road network is such that from any city you can get to any other one by moving along the roads.
You want to destroy the largest possible number of roads in the country so that the remaining roads would allow you to get from city s1 to city t1 in at most l1 hours and get from city s2 to city t2 in at most l2 hours.
Determine what maximum number of roads you need to destroy in order to meet the condition of your plan. If it is impossible to reach the desired result, print -1.
数据范围:
The first line contains two integers n, m (1 ≤ n ≤ 3000,
) — the number of cities and roads in the country, respectively.
Next m lines contain the descriptions of the roads as pairs of integers ai, bi (1 ≤ ai, bi ≤ n, ai ≠ bi). It is guaranteed that the roads that are given in the description can transport you from any city to any other one. It is guaranteed that each pair of cities has at most one road between them.
The last two lines contains three integers each, s1, t1, l1 and s2, t2, l2, respectively (1 ≤ si, ti ≤ n, 0 ≤ li ≤ n).
题解:
首先,保证了删掉的边最多,那就说明$s1$到$t1$和$s2$到$t2$都分别只有一条路径,不然的话我们还可以删掉更多的边。
接下来我们考虑,最终答案的形式。
必定是如下三种情况之一:
第一种,这两条路径互不相交。就是$s1$到$t1$,$s2$到$t2$。
第二种,存在一条公共路径,$l$到$r$,答案是$s1$到$l$,$l$到$r$,$r$到$t1$;和$s2$到$l$,$l$到$r$,$r$到$t2$。
最后一种是$s2$和$t2$调换,也就是$t2$到$l$,$l$到$r$,$r$到$s2$。
显然,每段路径都是最短路。
我们需要枚举$l$和$r$,也就是说我们需要多源最短路。
但是已知的算法最快也只能做到$n^2logn$,跑$n$遍堆优化$Dijkstra$。
好慢啊.....
诶,我们发现每条边的边权都相等,所以我们可以直接$bfs$。
因为边权都相等,所以每个点第一次到的时间戳就是距离。
然后枚举更新答案就好,不要忘记了第一种情况和判断是否超出了长度上限$l1$和$l2$。
代码:
#include <bits/stdc++.h>
#define N 3010
using namespace std;
int head[N], to[N << 1], nxt[N << 1], tot;
int dis[N][N];
bool vis[N];
queue<int > q;
char *p1, *p2, buf[100000];
#define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000,stdin), p1 == p2) ? EOF : *p1 ++ )
int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
}
inline void add(int x, int y) {
to[ ++ tot] = y;
nxt[tot] = head[x];
head[x] = tot;
}
void bfs(int x) {
while (!q.empty())
q.pop();
memset(dis[x], 0x3f, sizeof dis[x]);
memset(vis, false, sizeof vis);
vis[x] = true;
dis[x][x] = 0;
q.push(x);
while (!q.empty()) {
int p = q.front(); q.pop();
for (int i = head[p]; i; i = nxt[i]) {
if (!vis[to[i]]) {
dis[x][to[i]] = dis[x][p] + 1;
vis[to[i]] = true;
q.push(to[i]);
}
}
}
}
int main() {
int n = rd(), m = rd();
for (int i = 1; i <= m; i ++ ) {
int x = rd(), y = rd();
add(x, y), add(y, x);
}
int s1 = rd(), t1 = rd(), l1 = rd();
int s2 = rd(), t2 = rd(), l2 = rd();
for (int i = 1; i <= n; i ++ ) {
bfs(i);
}
if(dis[s1][t1] > l1 || dis[s2][t2] > l2)
puts("-1"), exit(0);
int ans = dis[s1][t1] + dis[s2][t2];
for (int i = 1; i <= n ; i ++ ) {
for (int j = 1; j <= n; j ++ ) {
int v1, v2;
v1 = dis[s1][i] + dis[i][j] + dis[j][t1];
v2 = dis[s2][i] + dis[i][j] + dis[j][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
v2 = dis[s2][j] + dis[j][i] + dis[i][t2];
if(v1 <= l1 && v2 <= l2)
ans = min(ans, v1 + v2 - dis[i][j]);
}
}
printf("%d\n", m - ans);
return 0;
}
小结:好题啊。对于一个没有思路的题,我们可以想一想最终答案的样子。如果有没有用上的条件,看看能不能通过那个条件来优化当前的不完美算法。
[CF544D]Destroying Roads_最短路_bfs的更多相关文章
- CF Destroying Roads (最短路)
Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路
题目链接: 题目 D. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input ...
- Codeforces 543B Destroying Roads(最短路)
题意: 给定一个n个点(n<=3000)所有边长为1的图,求最多可以删掉多少条边后,图满足s1到t1的距离小于l1,s2到t2的距离小于l2. Solution: 首先可以分两种情况讨论: 1: ...
- Codeforces Round #302 (Div. 2) D. Destroying Roads 最短路 删边
题目:有n个城镇,m条边权为1的双向边让你破坏最多的道路,使得从s1到t1,从s2到t2的距离分别不超过d1和d2. #include <iostream> #include <cs ...
- Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路
D - Destroying Roads Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...
- POJ 3921 Destroying the bus stations 沿着最短路迭代加深搜索
题目:给出一个图,问最少删除多少个点,使得从点1到点n经过的点数超过k个. 分析: 上网搜了一下,发现很多人用网络流做的,发现我不会.再后来看到这篇说网络流的做法是错的,囧. 后来发现点数有点少,直接 ...
- codeforces 544 D Destroying Roads 【最短路】
题意:给出n个点,m条边权为1的无向边,破坏最多的道路,使得从s1到t1,s2到t2的距离不超过d1,d2 因为最后s1,t1是连通的,且要破坏掉最多的道路,那么就是求s1到t1之间的最短路 用bfs ...
- 图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)
Problem Description Gabiluso is one of the greatest spies in his country. Now he's trying to complet ...
- Codeforces 543.B Destroying Roads
B. Destroying Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
随机推荐
- one(type,[data],fn) 为每一个匹配元素的特定事件(像click)绑定一个一次性的事件处理函数。
one(type,[data],fn) 概述 为每一个匹配元素的特定事件(像click)绑定一个一次性的事件处理函数. 在每个对象上,这个事件处理函数只会被执行一次.其他规则与bind()函数相同.这 ...
- TTTTTTTTTTTTTTTT hdu 5727 Necklace 阴阳珠 二分图匹配+暴力全排列
Necklace Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Su ...
- Go位运算
目录 &(AND) |(OR) ^(XOR) &^(AND NOT) << 和 >> & 位运算 AND | 位运算 OR ^ 位运算 XOR & ...
- JQuery动画之滑入滑出动画
1. 滑入动画(类似于商店的卷帘门) $(selector).slideDown(speed, 回调函数); 解释: 此语句实现的功能为, 在XX时间内, 下拉动画, 显现元素. 当 slideDow ...
- Django-批量更新
1.表结构 class Student(models.Model): """ 学生表(已报名) """ customer = models. ...
- JavaWeb_(Hibernate框架)Hibernate中数据查询语句SQL基本用法
本文展示三种在Hibernate中使用SQL语句进行数据查询基本用法 1.基本查询 2.条件查询 3.分页查询 package com.Gary.dao; import java.util.List; ...
- CVE-2019-0708复现
本人在此申明: 此次复现仅供学习使用 不可用于非法用途 一切违法后果与本人无关 复现0708第一步 github下载exp Kali里面执行命令 wget https://raw.githubuser ...
- LK光流算法公式详解
由于工程需要用到 Lucas-Kanade 光流,在此进行一下简单整理(后续还会陆续整理关于KCF,PCA,SVM,最小二乘.岭回归.核函数.dpm等等): 光流,简单说也就是画面移动过程中,图像上每 ...
- js eval 动态内容生成
js比较简单易上手,适合用于动态内容生成.或规则判断,比如给出json格式的数据,动态执行js脚本得到预期的结果等. 接口文档:包括jsConfig.jsEval两个接口 jsConfig使用get的 ...
- react-native(ios)简单配置环境(mac)
1.首先全局安装react-native-cli npm install -g react-native-cli 2.安装xcode(appStore) 3.打开xcode,检查一下是否装有某个版本的 ...