[SHOI2013]阶乘字符串
题目描述
给定一个由前\(n\)个小写字母组成的串\(S\)。
串\(S\)是阶乘字符串当且仅当前\(n\)个小写字母的全排列(共\(n!\)种)都作为\(S\)的子序列(可以不连续)出现。
由这个定义出发,可以得到一个简单的枚举法去验证,但是它实在太慢了。所以现在请你设计一个算法,在\(1\)秒内判断出给定的串是否是阶乘字符串。
输入格式
输入第\(1\)行一个整数\(T\),表示这个文件中会有\(T\)组数据。
接下来分\(T\)个块,每块\(2\)行:
第\(1\)行一个正整数\(n\),表示\(S\)由前\(n\)个小写字母组成。
第\(2\)行一个字符串\(S\)。
输出格式
对于每组数据,分别输出一行。每行是\(YES\)或者\(NO\),表示该数据对应的串\(S\)是否是阶乘字符串。
样例输入
2
2
bbaa
2
aba
样例输出
NO
YES
【样例解释】
第一组数据中,ab这个串没有作为子序列出现。
数据范围
T \leq 5 \\\\
|S| \leq 450 \\\\
\]
解题报告
题意理解
这道题目,有一点点绕? 可能是我太菜了
我们初步读题可知,题目要求我们判断一个字符串.
给你一个\(N\),如果说一个字符串满足\(N\)的全排列字符串
而且这些字符串,都以序列的形式出现在这个字符串,那么我们称之为合法,否则不合法.
算法解析
这道题目运用的是.状态压缩DP.
首先我们思考一下,这道题目\(N \leq 26\),这个数据范围似乎不太好状态压缩?
数据太大了....
但是我们发现,其实\(N \ge 21\),完全可以判断无解.
这是为什么,有证明吗?
当\(n \ge 21\)的时候
假设\(|S| = 450\)
在|S|中任意取21个数字
$ C(450, 21) < 21!$
说明这\(450\)个字符不能完全凑成\(n!\)个序列。
接下来我们着重分析一下,状态压缩思想.
我们知道状态压缩其实就是 集合二进制枚举 处理.
那么既然如此,我们不妨设置一下 状态表示.
- 状态是一个 集合
- 题目要求 全排列合法
- 一般题目中,总会有 最后一位,也就是转移过来的元素
设\(f[S]\)表示当\(S\)中集合中的字母构成的排列均在原序列\([1,f[S]]\)出现的最小值。
既然如此的话.
我们不妨预处理一下.
\(g[i][j]\)表示从\(i\)开始下一个字母\(j\)出现的位置。
总而言之,我们就是利用 刷表法则,一步步推导状态.
因此我们不妨设置核心程序.
for(int S=1; S<(1<<n); S++)//枚举子集
{
int cnt=0;
for(int i=0; i<n; i++)
if(S & (1<<i) ) //s集合拥有这一位,其实也就是i结尾
cnt=max(cnt,g[f [S^(1<<i) ]][i] );//排除这一位,然后转移过来
f[S]=cnt;//更新
}
代码解析
#include <bits/stdc++.h>
using namespace std;
const int N=460;
#define read(x) scanf("%d",&x)
int t,n,m,g[N][32],f[1<<21];
char s[N];
inline void init()
{
read(t);
while(t--)
{
read(n);
scanf("%s",s+1);//默认读入从1开始
m=strlen(s+1);
if (n>21)//特殊判定无解情况
{
puts("NO");
continue;
}
for(int i=m+1; i>=0; i--)//从i开始下一个j出现的位置
{
for(int j=0; j<n; j++)
g[i][j]=( i>=m ? m+1 : g[i+1][j] ); //前面的位置,最近的是当前这位的
if(i!=m)
g[i][ s[i+1]-'a' ]=i;//当前位为最近的
}
for(int S=1; S<(1<<n); S++)//枚举子集
{
int cnt=0;
for(int i=0; i<n; i++)
if(S & (1<<i) ) //s集合拥有这一位,其实也就是i结尾
cnt=max(cnt,g[f [S^(1<<i) ]][i] );//排除这一位,然后转移过来
f[S]=cnt;//更新
}
printf("%s\n",f[ (1<<n)-1 ] <=m ? "YES":"NO" );//是否存在
}
}
int main()
{
init();
return 0;
}
[SHOI2013]阶乘字符串的更多相关文章
- 洛谷 P3989 [SHOI2013]阶乘字符串 解题报告
P3989 [SHOI2013]阶乘字符串 题目描述 给定一个由前\(n(\le 26)\)个小写字母组成的串\(S(|S|\le 450)\).串\(S\)是阶乘字符串当且仅当前 \(n\) 个小写 ...
- BZOJ4416: [Shoi2013]阶乘字符串
可以大胆猜想n>21时无解,至于依据,不开O2,1s,n<=21刚好能卡过去= = 并不会证= = #include<cstdio> void up(int& a,in ...
- BZOJ4416 [Shoi2013]阶乘字符串 【序列自动机 + 状压dp】
题目链接 BZOJ4416 题解 建立序列自动机,即预处理数组\(nxt[i][j]\)表示\(i\)位置之后下一个\(j\)出现的位置 设\(f[i]\)表示合法字符集合为\(i\)的最短前缀,枚举 ...
- [BZOJ4416][SHOI2013]阶乘字符串(子集DP)
怎么也没想到是子集DP,想到了应该就没什么难度了. 首先n>21时必定为NO. g[i][j]表示位置i后的第一个字母j在哪个位置,n*21求出. f[S]表示S的所有全排列子序列出现的最后末尾 ...
- BZOJ4416 SHOI2013阶乘字符串(状压dp)
当n大到一定程度(>21)时一定无解,并不会证. 如果要取出一个排列,显然应该让每一位在序列中的位置尽量靠前.于是设f[S]表示存在S子集中这些字母所组成的所有排列的最短前缀的长度,枚举当前排列 ...
- BZOJ 4416 【SHOI2013】 阶乘字符串
题目链接:阶乘字符串 又是一道不会做的题……看了题解后我被吓傻了…… 首先我们可以有一个显然的\(O(2^nn)\)的做法.我们先预处理出\(g_{i,j}\)表示字符串中\(i\)号位置开始第一个\ ...
- 【JZOJ3293】【BZOJ4416】【luoguP3989】阶乘字符串
description 给定一个由前n个小写字母组成的串S. 串S是阶乘字符串当且仅当前n个小写字母的全排列(共n!种)都作为S的子序列(可以不连续)出现. 由这个定义出发,可以得到一个简单的枚举法去 ...
- [JZOJ3293] 【SHTSC2013】阶乘字符串
题目 题目大意 给你一个字符串,判断这个字符串是否为"阶乘字符串". 就是子序列包含字符集的全排列的字符串. n≤26n\leq 26n≤26 ∣S∣≤450|S|\leq 450 ...
- [暑假的bzoj刷水记录]
(这篇我就不信有网站来扣) 这个暑假打算刷刷题啥的 但是写博客好累啊 堆一起算了 隔一段更新一下. 7月27号之前刷的的就不写了 , 写的累 代码不贴了,可以找我要啊.. 2017.8.27upd ...
随机推荐
- webdriervAPI(上传文件)
from selenium import webdriver driver = webdriver.Chorme() drvier.implicitly_wait(10) driver.ge ...
- 通用 spring cloud 微服务模板
说明文档 功能 1. 基于映射数据库一键生成 spring cloud 微服务 2. 通用 Controller ,无需编写代码即可完成基于数据库的服务 3. 动态多条件 CRUD + 分页 使用说明 ...
- 【计算机视觉】Opencv中的Face Detection using Haar Cascades
[计算机视觉]Opencv中的Face Detection using Haar Cascades 标签(空格分隔): [图像处理] 声明:引用请注明出处http://blog.csdn.net/lg ...
- SpringEl表达式解析
应用场景: 1.用户日志 2.缓存处理 3........... import org.springframework.expression.EvaluationContext; import org ...
- 学习笔记:CentOS7学习之十七: Linux计划任务与日志的管理
目录 学习笔记:CentOS7学习之十七: Linux计划任务与日志的管理 17.1 计划任务-at-cron-计划任务使用方法 17.1.1 at计划任务的使用 17.1.2 查看和删除at将要执行 ...
- kafka2.10集群搭建(一)
一.kafka集群搭建 1.上传解压 2.配置文件的配置 1.修改 server.properties文件 broker.id=11 #192.168.199.11 #21 一般使用ip后三位 lis ...
- [转帖]curl网站开发指南
curl网站开发指南 http://www.ruanyifeng.com/blog/2011/09/curl.html linux 里面有非常多很好的工具 比如这个 curl 之前 以为 wget 就 ...
- Educational Codeforces Round 74 (Rated for Div. 2)补题
慢慢来. 题目册 题目 A B C D E F G 状态 √ √ √ √ × ∅ ∅ //√,×,∅ 想法 A. Prime Subtraction res tp A 题意:给定\(x,y(x> ...
- 三分钟搞定Python中的装饰器
python的装饰器是python的特色高级功能之一,言简意赅得说,其作用是在不改变其原有函数和类的定义的基础上,给他们增添新的功能. 装饰器存在的意义是什么呢?我们知道,在python中函数可以调用 ...
- MongoDB环境搭建
MongoDB系列第一课:MongDB简介 MongoDB系列第二课:MongDB环境搭建 MongoDB系列第三课:MongDB用户管理 MongoDB系列第四课:MongoDB数据库.集合.文档的 ...