【计算机视觉】【神经网络与深度学习】论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection
尊重原创,转载请注明:http://blog.csdn.net/tangwei2014
这是继RCNN,fast-RCNN 和 faster-RCNN之后,rbg(Ross Girshick)大神挂名的又一大作,起了一个很娱乐化的名字:YOLO。
虽然目前版本还有一些硬伤,但是解决了目前基于DL检测中一个大痛点,就是速度问题。
其增强版本GPU中能跑45fps,简化版本155fps。
论文下载:http://arxiv.org/abs/1506.02640
代码下载:https://github.com/pjreddie/darknet
本篇博文focus到方法上。实验结果等整理全了再奉上。
1. YOLO的核心思想
YOLO的核心思想就是利用整张图作为网络的输入,直接在输出层回归bounding box的位置和bounding box所属的类别。
没记错的话faster RCNN中也直接用整张图作为输入,但是faster-RCNN整体还是采用了RCNN那种 proposal+classifier的思想,只不过是将提取proposal的步骤放在CNN中实现了。
2.YOLO的实现方法
- 将一幅图像分成SxS个网格(grid cell),如果某个object的中心 落在这个网格中,则这个网格就负责预测这个object。
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。
这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。 第二项是预测的bounding box和实际的groundtruth之间的IoU值。每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。则SxS个网格,每个网格要预测B个bounding box还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。
注意:class信息是针对每个网格的,confidence信息是针对每个bounding box的。举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。
整个网络结构如下图所示:在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS处理,就得到最终的检测结果。
3.YOLO的实现细节
每个grid有30维,这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。
其中坐标的x,y用对应网格的offset归一化到0-1之间,w,h用图像的width和height归一化到0-1之间。在实现中,最主要的就是怎么设计损失函数,让这个三个方面得到很好的平衡。作者简单粗暴的全部采用了sum-squared error loss来做这件事。
这种做法存在以下几个问题:
第一,8维的localization error和20维的classification error同等重要显然是不合理的;
第二,如果一个网格中没有object(一幅图中这种网格很多),那么就会将这些网格中的box的confidence push到0,相比于较少的有object的网格,这种做法是overpowering的,这会导致网络不稳定甚至发散。
解决办法:- 更重视8维的坐标预测,给这些损失前面赋予更大的loss weight, 记为
在pascal VOC训练中取5。
- 对没有object的box的confidence loss,赋予小的loss weight,记为
在pascal VOC训练中取0.5。
- 有object的box的confidence loss和类别的loss的loss weight正常取1。
- 更重视8维的坐标预测,给这些损失前面赋予更大的loss weight, 记为
对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。
为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
- 最后整个的损失函数如下所示:
这个损失函数中:
- 只有当某个网格中有object的时候才对classification error进行惩罚。
- 只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
- 其他细节,例如使用激活函数使用leak RELU,模型用ImageNet预训练等等,在这里就不一一赘述了。
4.YOLO的缺点
YOLO对相互靠的很近的物体,还有很小的群体 检测效果不好,这是因为一个网格中只预测了两个框,并且只属于一类。
对测试图像中,同一类物体出现的新的不常见的长宽比和其他情况是。泛化能力偏弱。
由于损失函数的问题,定位误差是影响检测效果的主要原因。尤其是大小物体的处理上,还有待加强。
【计算机视觉】【神经网络与深度学习】论文阅读笔记:You Only Look Once: Unified, Real-Time Object Detection的更多相关文章
- 论文阅读笔记三十三:Feature Pyramid Networks for Object Detection(FPN CVPR 2017)
论文源址:https://arxiv.org/abs/1612.03144 代码:https://github.com/jwyang/fpn.pytorch 摘要 特征金字塔是用于不同尺寸目标检测中的 ...
- 论文阅读笔记五十一:CenterNet: Keypoint Triplets for Object Detection(CVPR2019)
论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的 ...
- 论文阅读笔记二十七:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks(CVPR 2016)
论文源址:https://arxiv.org/abs/1506.01497 tensorflow代码:https://github.com/endernewton/tf-faster-rcnn 室友对 ...
- [计算机视觉][神经网络与深度学习]SSD安装及其训练教程
SSD的安装 在home目录下,获取SSD的代码,下载完成后有一个caffe文件夹 git clone https://github.com/weiliu89/caffe.git cd caffe g ...
- 论文学习-深度学习目标检测2014至201901综述-Deep Learning for Generic Object Detection A Survey
目录 写在前面 目标检测任务与挑战 目标检测方法汇总 基础子问题 基于DCNN的特征表示 主干网络(network backbone) Methods For Improving Object Rep ...
- 论文阅读笔记四十九:ScratchDet: Training Single-Shot Object Detectors from Scratch(CVPR2019)
论文原址:https://arxiv.org/abs/1810.08425 github:https://github.com/KimSoybean/ScratchDet 摘要 当前较为流行的检测算法 ...
- [计算机视觉][神经网络与深度学习]R-FCN、SSD、YOLO2、faster-rcnn和labelImg实验笔记
R-FCN.SSD.YOLO2.faster-rcnn和labelImg实验笔记 转自:https://ask.julyedu.com/question/7490 R-FCN paper:https: ...
- [计算机视觉][神经网络与深度学习]Faster R-CNN配置及其训练教程2
faster-rcnn分为matlab版本和python版本,首先记录弄python版本的环境搭建过程.matlab版本见另一篇:faster-rcnn(testing): ubuntu14.04+c ...
- 吴恩达《深度学习》第四门课(3)目标检测(Object detection)
3.1目标定位 (1)案例1:在构建自动驾驶时,需要定位出照片中的行人.汽车.摩托车和背景,即四个类别.可以设置这样的输出,首先第一个元素pc=1表示有要定位的物体,那么用另外四个输出元素表示定位框的 ...
- [置顶]
人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)
这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...
随机推荐
- php类知识 self $this都只能在当前类中使用
$this是当前对象的指针,self是当前类的指针 $this只能用在成员方法中,不能存在于静态方法 self 静态方法和成员方法中都能使用 self可以访问类常量,静态属性,静态方法,成员方法--- ...
- Python3-json3csv
import json import csv json_str = '[{"a":1,"b":"2","c":" ...
- [Flask]sqlalchemy使用count()函数遇到的问题
sqlalchemy使用count()函数遇到的问题 在使用flask-sqlalchemy对一个千万级别表进行count操作时,出现了耗时严重.内存飙升的问题. 原代码: # 统计当日登陆次数 co ...
- python3 selenium使用
其实这个就相当于模拟人的点击事件来连续的访问浏览器.如果你玩过王者荣耀的话在2016年一月份的版本里面就有一个bug. 安卓手机下载一个按键精灵就可以在冒险模式里面设置按键,让手机自动玩闯关,一局19 ...
- 06.旋转数组的最小数字 Java
题目描述 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋 ...
- Java企业版文档地址
地址:http://docs.oracle.com/javaee/7/index.html
- 前世今生:Hive、Shark、spark SQL
Hive (http://en.wikipedia.org/wiki/Apache_Hive )(非严格的原文顺序翻译) Apache Hive是一个构建在Hadoop上的数据仓库框架,它提供数据的 ...
- 使用ViewFlipper实现广告信息栏的上下翻滚效果
import android.os.Bundle; import android.support.v7.app.AppCompatActivity; import android.view.Gestu ...
- Ironic 裸金属管理服务的底层技术支撑
目录 文章目录 目录 底层技术支撑 DHCP NBP TFTP IPMI PXE & iPXE Cloud Init Linux 操作系统启动引导过程 底层技术支撑 PXE:预启动执行环境,支 ...
- Java计算器的图形界面应用程序
JAVA计算器的图形界面应用程序 题目简介: 整体分析: 实验代码: /*部分使用插件做界面*/ import java.awt.EventQueue; import javax.swing.JB ...