转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用

简介

混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。

数据分析与挖掘体系位置

混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

在分类型模型评判的指标中,常见的方法有如下三种:

混淆矩阵(也称误差矩阵,Confusion Matrix)
ROC曲线
AUC面积 本文主要介绍第一种方法,即混淆矩阵,也称误差矩阵。

此方法在整个数据分析与挖掘体系中的位置如下图所示。
                                       

混淆矩阵的定义

混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。

以分类模型中最简单的二分类为例,对于这种问题,我们的模型最终需要判断样本的结果是0还是1,或者说是positive还是negative。

我们通过样本的采集,能够直接知道真实情况下,哪些数据结果是positive,哪些结果是negative。同时,我们通过用样本数据跑出分类型模型的结果,也可以知道模型认为这些数据哪些是positive,哪些是negative。

因此,我们就能得到这样四个基础指标,我称他们是一级指标(最底层的):

真实值是positive,模型认为是positive的数量(True Positive=TP
真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第一类错误(Type I Error)
真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第二类错误(Type II Error)
真实值是negative,模型认为是negative的数量(True Negative=TN
将这四个指标一起呈现在表格中,就能得到如下这样一个矩阵,我们称它为混淆矩阵(Confusion Matrix):
                            

混淆矩阵的指标

预测性分类模型,肯定是希望越准越好。那么,对应到混淆矩阵中,那肯定是希望TP与TN的数量大,而FP与FN的数量小。所以当我们得到了模型的混淆矩阵后,就需要去看有多少观测值在第二、四象限对应的位置,这里的数值越多越好;反之,在第一、三四象限对应位置出现的观测值肯定是越少越好。

二级指标

但是,混淆矩阵里面统计的是个数,有时候面对大量的数据,光凭算个数,很难衡量模型的优劣。因此混淆矩阵在基本的统计结果上又延伸了如下4个指标,我称他们是二级指标(通过最底层指标加减乘除得到的):

准确率(Accuracy)—— 针对整个模型
精确率(Precision)
灵敏度(Sensitivity):就是召回率(Recall)
特异度(Specificity)
我用表格的方式将这四种指标的定义、计算、理解进行了汇总:
            

通过上面的四个二级指标,可以将混淆矩阵中数量的结果转化为0-1之间的比率。便于进行标准化的衡量。

在这四个指标的基础上在进行拓展,会产令另外一个三级指标

三级指标

这个指标叫做F1 Score。他的计算公式是:

                               

其中,P代表Precision,R代表Recall。

F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

混淆矩阵的实例

当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。

下面的混淆矩阵为例,我们的模型目的是为了预测样本是什么动物,这是我们的结果:    
                        

通过混淆矩阵,我们可以得到如下结论:

Accuracy

在总共66个动物中,我们一共预测对了10 + 15 + 20=45个样本,所以准确率(Accuracy)=45/66 = 68.2%。

以猫为例,我们可以将上面的图合并为二分问题

                            

Precision

所以,以猫为例,模型的结果告诉我们,66只动物里有13只是猫,但是其实这13只猫只有10只预测对了。模型认为是猫的13只动物里,有1条狗,两只猪。所以,Precision(猫)= 10/13 = 76.9%

Recall

以猫为例,在总共18只真猫中,我们的模型认为里面只有10只是猫,剩下的3只是狗,5只都是猪。这5只八成是橘猫,能理解。所以,Recall(猫)= 10/18 = 55.6%

Specificity

以猫为例,在总共48只不是猫的动物中,模型认为有45只不是猫。所以,Specificity(猫)= 45/48 = 93.8%。

虽然在45只动物里,模型依然认为错判了6只狗与4只猫,但是从猫的角度而言,模型的判断是没有错的。

(这里是参见了Wikipedia,Confusion Matrix的解释,https://en.wikipedia.org/wiki/Confusion_matrix)

F1-Score

通过公式,可以计算出,对猫而言,F1-Score=(2 * 0.769 *  0.556)/( 0.769 +  0.556) = 64.54%

同样,我们也可以分别计算猪与狗各自的二级指标与三级指标值。

【分类模型评判指标 一】混淆矩阵(Confusion Matrix)的更多相关文章

  1. 【分类模型评判指标 二】ROC曲线与AUC面积

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...

  2. 【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

    一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,p ...

  3. ML01 机器学习后利用混淆矩阵Confusion matrix 进行结果分析

      目标: 快速理解什么是混淆矩阵, 混淆矩阵是用来干嘛的. 首先理解什么是confusion matrix 看定义,在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是 ...

  4. 混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

    原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. ...

  5. python画混淆矩阵(confusion matrix)

    混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1 ...

  6. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

  7. 分类问题(三)混淆矩阵,Precision与Recall

    混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵, ...

  8. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  9. WEKA “Detailed Accuracy By Class”和“Confusion Matrix”含义

    原文 === Summary ===(总结) Correctly Classified Instances(正确分类的实例)          45               90      % I ...

随机推荐

  1. Docker 杂记

    1.配置阿里云加速 :可以找到各种加速URL.比如 https://tnxkcso1.mirror.aliyuncs.com/ 2.windows 配置: 3.docker info可以看到新的配置已 ...

  2. 【js】null 和 undefined的区别?

    1.首先看一个判断题:null和undefined 是否相等     console.log(null==undefined)//true     console.log(null===undefin ...

  3. asp.net mvc4 学习1

    1 简介:微软在很早就看到了基于windows系统的web开发平台的需求,这时便开始提出自己的解决方案即微软的第一个基于web开发的平台ASP.再后来随着需求和性能的要求再2002年推出第二个解决方案 ...

  4. 聚类算法之MeanShift

    机器学习的研究方向主要分为三大类:聚类,分类与回归. MeanShift作为聚类方法之一,在视觉领域有着广泛的应用,尤其是作为深度学习回归后的后处理模块而存在着. 接下来,我们先介绍下基本功能流程,然 ...

  5. tempfile:临时文件系统对象

    介绍 想要安全的创建名字唯一的临时文件,以防止被试图破坏应用或窃取数据的人猜出,这很有难度.tempfile模块提供了多个函数来安全创建临时文件系统资源.TemporaryFile函数打开并返回一个未 ...

  6. mysql 5.6.38 数据库编译安装

    一.系统环境: # cat /etc/redhat-release CentOS release 6.9 (Final) 二.mysql 编译安装: 1.安装依赖包: yum install -y n ...

  7. 实验楼Python项目

    整理几个实验楼小项目,有免费的也有会员的,会员的可以参考他们的实验报告. 直接去实验楼这个网站,粘贴上就能搜到. 免费专区: Kmeans聚类算法评估足球比赛 Python实现3D建模工具 K-近邻算 ...

  8. Python 列出 windows 安装的软件

    Python 列出 windows 安装的软件 参考链接:https://stackoverflow.com/questions/802499/how-can-i-enumerate-list-all ...

  9. WPF DevExpress ChartControl使用之XYDiagram

    WPF使用Dev和WinForm有许多不同,相对而言,WPF要更简单和炫酷一点,我只做了一点基本的功能,没有仔细的研究,这里只介绍一下WPF Dev ChartControl绘制XYDiagram的基 ...

  10. cookie的使用和设置

    cookie就是服务端通过浏览器端的存储机制,把一些会话相关数据存储在浏览器中.优点:分担服务端的压力,提高了效率,缺点:不安全 生成和请求原理 cookie的生命周期设定以后,哪怕是关闭浏览器,那么 ...