转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80520839 略有改动,仅供个人学习使用

简介

混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

一句话解释版本:混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。

数据分析与挖掘体系位置

混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

在分类型模型评判的指标中,常见的方法有如下三种:

混淆矩阵(也称误差矩阵,Confusion Matrix)
ROC曲线
AUC面积 本文主要介绍第一种方法,即混淆矩阵,也称误差矩阵。

此方法在整个数据分析与挖掘体系中的位置如下图所示。
                                       

混淆矩阵的定义

混淆矩阵(Confusion Matrix),它的本质远没有它的名字听上去那么拉风。矩阵,可以理解为就是一张表格,混淆矩阵其实就是一张表格而已。

以分类模型中最简单的二分类为例,对于这种问题,我们的模型最终需要判断样本的结果是0还是1,或者说是positive还是negative。

我们通过样本的采集,能够直接知道真实情况下,哪些数据结果是positive,哪些结果是negative。同时,我们通过用样本数据跑出分类型模型的结果,也可以知道模型认为这些数据哪些是positive,哪些是negative。

因此,我们就能得到这样四个基础指标,我称他们是一级指标(最底层的):

真实值是positive,模型认为是positive的数量(True Positive=TP
真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第一类错误(Type I Error)
真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第二类错误(Type II Error)
真实值是negative,模型认为是negative的数量(True Negative=TN
将这四个指标一起呈现在表格中,就能得到如下这样一个矩阵,我们称它为混淆矩阵(Confusion Matrix):
                            

混淆矩阵的指标

预测性分类模型,肯定是希望越准越好。那么,对应到混淆矩阵中,那肯定是希望TP与TN的数量大,而FP与FN的数量小。所以当我们得到了模型的混淆矩阵后,就需要去看有多少观测值在第二、四象限对应的位置,这里的数值越多越好;反之,在第一、三四象限对应位置出现的观测值肯定是越少越好。

二级指标

但是,混淆矩阵里面统计的是个数,有时候面对大量的数据,光凭算个数,很难衡量模型的优劣。因此混淆矩阵在基本的统计结果上又延伸了如下4个指标,我称他们是二级指标(通过最底层指标加减乘除得到的):

准确率(Accuracy)—— 针对整个模型
精确率(Precision)
灵敏度(Sensitivity):就是召回率(Recall)
特异度(Specificity)
我用表格的方式将这四种指标的定义、计算、理解进行了汇总:
            

通过上面的四个二级指标,可以将混淆矩阵中数量的结果转化为0-1之间的比率。便于进行标准化的衡量。

在这四个指标的基础上在进行拓展,会产令另外一个三级指标

三级指标

这个指标叫做F1 Score。他的计算公式是:

                               

其中,P代表Precision,R代表Recall。

F1-Score指标综合了Precision与Recall的产出的结果。F1-Score的取值范围从0到1的,1代表模型的输出最好,0代表模型的输出结果最差。

混淆矩阵的实例

当分类问题是二分问题是,混淆矩阵可以用上面的方法计算。当分类的结果多于两种的时候,混淆矩阵同时适用。

下面的混淆矩阵为例,我们的模型目的是为了预测样本是什么动物,这是我们的结果:    
                        

通过混淆矩阵,我们可以得到如下结论:

Accuracy

在总共66个动物中,我们一共预测对了10 + 15 + 20=45个样本,所以准确率(Accuracy)=45/66 = 68.2%。

以猫为例,我们可以将上面的图合并为二分问题

                            

Precision

所以,以猫为例,模型的结果告诉我们,66只动物里有13只是猫,但是其实这13只猫只有10只预测对了。模型认为是猫的13只动物里,有1条狗,两只猪。所以,Precision(猫)= 10/13 = 76.9%

Recall

以猫为例,在总共18只真猫中,我们的模型认为里面只有10只是猫,剩下的3只是狗,5只都是猪。这5只八成是橘猫,能理解。所以,Recall(猫)= 10/18 = 55.6%

Specificity

以猫为例,在总共48只不是猫的动物中,模型认为有45只不是猫。所以,Specificity(猫)= 45/48 = 93.8%。

虽然在45只动物里,模型依然认为错判了6只狗与4只猫,但是从猫的角度而言,模型的判断是没有错的。

(这里是参见了Wikipedia,Confusion Matrix的解释,https://en.wikipedia.org/wiki/Confusion_matrix)

F1-Score

通过公式,可以计算出,对猫而言,F1-Score=(2 * 0.769 *  0.556)/( 0.769 +  0.556) = 64.54%

同样,我们也可以分别计算猪与狗各自的二级指标与三级指标值。

【分类模型评判指标 一】混淆矩阵(Confusion Matrix)的更多相关文章

  1. 【分类模型评判指标 二】ROC曲线与AUC面积

    转自:https://blog.csdn.net/Orange_Spotty_Cat/article/details/80499031 略有改动,仅供个人学习使用 简介 ROC曲线与AUC面积均是用来 ...

  2. 【机器学习】--模型评估指标之混淆矩阵,ROC曲线和AUC面积

    一.前述 怎么样对训练出来的模型进行评估是有一定指标的,本文就相关指标做一个总结. 二.具体 1.混淆矩阵 混淆矩阵如图:  第一个参数true,false是指预测的正确性.  第二个参数true,p ...

  3. ML01 机器学习后利用混淆矩阵Confusion matrix 进行结果分析

      目标: 快速理解什么是混淆矩阵, 混淆矩阵是用来干嘛的. 首先理解什么是confusion matrix 看定义,在机器学习领域,混淆矩阵(confusion matrix),又称为可能性表格或是 ...

  4. 混淆矩阵(Confusion matrix)的原理及使用(scikit-learn 和 tensorflow)

    原理 在机器学习中, 混淆矩阵是一个误差矩阵, 常用来可视化地评估监督学习算法的性能. 混淆矩阵大小为 (n_classes, n_classes) 的方阵, 其中 n_classes 表示类的数量. ...

  5. python画混淆矩阵(confusion matrix)

    混淆矩阵(Confusion Matrix),是一种在深度学习中常用的辅助工具,可以让你直观地了解你的模型在哪一类样本里面表现得不是很好. 如上图,我们就可以看到,有一个样本原本是0的,却被预测成了1 ...

  6. [机器学习]-分类问题常用评价指标、混淆矩阵及ROC曲线绘制方法

    分类问题 分类问题是人工智能领域中最常见的一类问题之一,掌握合适的评价指标,对模型进行恰当的评价,是至关重要的. 同样地,分割问题是像素级别的分类,除了mAcc.mIoU之外,也可以采用分类问题的一些 ...

  7. 分类问题(三)混淆矩阵,Precision与Recall

    混淆矩阵 衡量一个分类器性能的更好的办法是混淆矩阵.它基于的思想是:计算类别A被分类为类别B的次数.例如在查看分类器将图片5分类成图片3时,我们会看混淆矩阵的第5行以及第3列. 为了计算一个混淆矩阵, ...

  8. 分类模型的性能评价指标(Classification Model Performance Evaluation Metric)

    二分类模型的预测结果分为四种情况(正类为1,反类为0): TP(True Positive):预测为正类,且预测正确(真实为1,预测也为1) FP(False Positive):预测为正类,但预测错 ...

  9. WEKA “Detailed Accuracy By Class”和“Confusion Matrix”含义

    原文 === Summary ===(总结) Correctly Classified Instances(正确分类的实例)          45               90      % I ...

随机推荐

  1. C#添加带验证的websevice接口

    记录一下,方便下次使用,或者能帮助到别人. 一.添加服务引用,输入WSDL文件地址. 二.代码 public TESTClient TestContext() { var binding = new ...

  2. adb实操

    一.命令 adb connect IP:5555 adb disconnect IP:5555 adb remount adb install 安装包的绝对路径 二.获取logcat信息 1.制作文件 ...

  3. 7.SpringMVC 配置式开发-ModelAndView和视图解析器

    ModelAndView 1.Model(模型) 1.model的本质就是HashMap,向模型中添加数据,就是往HashMap中去添加数据 2.HashMap 是一个单向查找数组,单向链表数组 3. ...

  4. Spring Cloud(二)服务提供者 Eureka + 服务消费者(rest + Ribbon)

    Ribbon是什么? Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起.Ribbon客户端组件提供一系列完善的配置项如连接超时 ...

  5. 变种XSS:持久控制

    变种XSS:持久控制 tig3r · 2015/11/30 10:42 0x00 引言 首先声明,这不是一个新洞,看过 Homakov 文章(最后附)以及译文的人想必对这种漏洞有所了解. 但原文写的太 ...

  6. java_day12_jdk1.8新特性

    1.接口的默认方法 Java 8允许我们给接口添加一个非抽象的方法实现,只需要使用default关键字即可,这个又叫做扩展方法 //Formula表示一个设计 计算公式 的接口 public inte ...

  7. scrapy 增量采集

    在做新闻或者其它文章采集到时候,只想采集最新发布的信息,之前采集过得就不要再采集了,从而达到增量采集到需求 scrapy-deltafetch,是一个用于解决爬虫去重问题的第三方插件. scrapy- ...

  8. shutil:高层文件操作

    介绍 shutil模块包括一些高层文件操作,如赋值和归档 复制文件 import shutil ''' copyfile将源文件的内容复制到目标文件,如果没有权限写目标文件,则会产生一个IOError ...

  9. Hadoop_19_MapReduce&&Yarn运行机制

    1.YARN的运行机制 1.1.概述: Yarn集群:负责海量数据运算时的资源调度,集群中的角色主要有:ResourceManager.NodeManager Yarn是一个资源调度(作业调度和集群资 ...

  10. curl命令的高级用法

    curl命令 是一个利用URL规则在命令行下工作的文件传输工具.它支持文件的上传和下载,所以是综合传输工具,但按传统,习惯称curl为下载工具.作为一款强力工具,curl支持包括HTTP.HTTPS. ...