Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种
傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000
N, M <= 10000000

Solution

以下均为n<m。

$\sum_{p\in prime}\sum_{a=1}^n\sum_{b=1}^m[gcd(a,b)=p]$

$\sum_{p\in prime}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}[gcd(a,b)=1]$

$\sum_{p\in prime}\sum_{a=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\sum_{b=1}^{\left \lfloor \frac{m}{p} \right \rfloor}\sum_{d|gcd(a,b)}\mu(d)$

$\sum_{p\in prime}\sum_{d=1}^{\left \lfloor \frac{n}{p} \right \rfloor}\mu(d){\left \lfloor \frac{n}{pd} \right \rfloor}{\left \lfloor \frac{m}{pd} \right \rfloor}$

推到这和前面做过的几个题是一样的……然后就不会了QAQ……

设$pd=T$

$\sum_{T=1}^{n}{\left \lfloor \frac{n}{T} \right \rfloor}{\left \lfloor \frac{m}{T} \right \rfloor}\sum_{p|T}\mu(\frac{T}{p})$

j接下来只需要求出$\sum_{p|T}\mu(\frac{T}{p})$的前缀和就好了。暴力枚举每个质数去更新ta的倍数即可。

Code

 #include<iostream>
#include<cstdio>
#define N (10000000)
using namespace std; int T,n,m,vis[N+],prime[N+],mu[N+],cnt;
long long sum[N+]; void Get_mu()
{
mu[]=;
for (int i=; i<=N; ++i)
{
if (!vis[i]){prime[++cnt]=i; mu[i]=-;}
for (int j=; j<=cnt && prime[j]*i<=N; ++j)
{
vis[prime[j]*i]=true;
if (i%prime[j]==) break;
mu[prime[j]*i]=-mu[i];
}
}
for (int i=; i<=cnt; ++i)
for (int j=; j*prime[i]<=N; ++j)
sum[j*prime[i]]+=mu[j];
for (int i=; i<=N; ++i) sum[i]+=sum[i-];
} long long Calc(int n,int m)
{
long long ans=; if (n>m) swap(n,m);
for (int l=,r; l<=n; l=r+)
{
r=min(n/(n/l),m/(m/l));
ans+=(sum[r]-sum[l-])*(n/l)*(m/l);
}
return ans;
} int main()
{
scanf("%d",&T);
Get_mu();
while (T--)
{
scanf("%d%d",&n,&m);
printf("%lld\n",Calc(n,m));
}
}

BZOJ2820:YY的GCD(莫比乌斯反演)的更多相关文章

  1. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  2. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  3. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  4. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  5. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  6. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  7. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. C#继承中构造函数,成员变量的执行顺序

    public class Animal { static string baseClassName; protected string _skincolor; Instancevariable iv ...

  2. Lucene学习之四:Lucene的索引文件格式(1)

    本文转载自:http://www.cnblogs.com/forfuture1978/archive/2009/12/14/1623597.html Lucene的索引里面存了些什么,如何存放的,也即 ...

  3. ApplicationContextAware接口

    在某些特殊的情况下,Bean需要实现某个功能,但该功能必须借助于Spring容器才能实现,此时就必须让该Bean先获取Spring容器,然后借助于Spring容器实现该功能.为了让Bean获取它所在的 ...

  4. eclipse中php项目开发的环境配置说明

    PHP开发的环境配置比Java开发要简单点,也就是我们不用安装jdk了,我们不用安装tomcat了,仅仅通过一种集成环境来安装就好了. PHP开发,其实有很多种环境配置方式,我这里使用了XAMPP进行 ...

  5. hdu 4628 Pieces 状态压缩dp

    Pieces Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others) Total S ...

  6. 二 Channel

    Java NIO的通道类似流,但又有些不同 既可以从通道中读取数据,也可以写数据到通道.但是流的读写通常是单向的 通道可以异步读写 通道中的数据通常总是要先读到一个Buffer,或者总是从Buffer ...

  7. hdu 1561 树形背包 选k个最大价值

    http://blog.csdn.net/dellaserss/article/details/8799730 这题其实和上一题思路是一样的,一个0节点作为根节点,通过剩余量来遍历子树. #inclu ...

  8. linux下查看内存的使用情况

    windows上有各种软件可以进行“一键加速”之类的操作,释放掉一些内存(虽然我暂时不知道是怎么办到的,有待后续学习).而任务管理器也可以很方便地查看各进程使用的内存情况,如下图: 同样地,linux ...

  9. HTML颜色代码

    记录十种个人比较喜欢的颜色: #19CAAD   #8CC7B5  #A0EEE1  #BEE7E9  #BEEDC7 #D6D5B7  #D1BA74  #E6CEAC  #ECAD9E  #F46 ...

  10. 007API网关服务Zuul

    001.POM配置 和普通Spring Boot工程相比,增加了Eureka Client.Zuul依赖和Spring Cloud依赖管理 <dependencies> <depen ...