题目描述

A sequence of N  integers I1,I2…In from the set {-1,0,1} is given. The bytecomputer is a device that allows the following operation on the sequence: incrementing I(i+1) by I(i) for any 1<=I<=N. There is no limit on the range of integers the bytecomputer can store, i.e., each I(i) can (in principle) have arbitrarily small or large value.
Program the bytecomputer so that it transforms the input sequence into a non-decreasing sequence (i.e., such that I1<=I2<=…I(n)) with the minimum number of operations.
给定一个{-1,0,1}组成的序列,你可以进行x[i]=x[i]+x[i-1]这样的操作,求最少操作次数使其变成不降序列。

输入

The first line of the standard input holds a single integer N(1<=N<=1000000) , the number of elements in the (bytecomputer's) input sequence.
The second line contains N  integers I1,I2…I(n) Ii from set {-1,0,1}  that are the successive elements of the (bytecomputer's) input sequence, separated by single spaces.

输出

The first and only line of the standard output should give one integer, the minimum number of operations the bytecomputer has to perform to make its input sequence non-decreasing, of the single word BRAK (Polish for none) if obtaining such a sequence is impossible.

样例输入

6
-1 1 0 -1 0 1

样例输出

3


题解

显而易见,最后的数列一定只包含-1、0和1.

于是用dp。

f[i][p]表示第i个数为p-1时的最小次数。

然后判断能否改变即可。

注意不要除0,实在不行也可以用多条if else语句判断。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int f[1000001][3] , a[1000001];
int main()
{
int n , i , j , k;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
scanf("%d" , &a[i]);
memset(f , 0x3f , sizeof(f));
f[1][a[1] + 1] = 0;
for(i = 2 ; i <= n ; i ++ )
for(j = -1 ; j <= 1 ; j ++ )
for(k = -1 ; k <= j ; k ++ )
if(j == a[i] || ((j - a[i]) * k > 0 && (j - a[i]) % k == 0))
f[i][j + 1] = min(f[i][j + 1] , f[i - 1][k + 1] + (k ? (j - a[i]) / k : 0));
i = min(f[n][0] , min(f[n][1] , f[n][2]));
if(i > 2 * n)
printf("BRAK\n");
else
printf("%d\n" , i);
return 0;
}

【bzoj3427】Poi2013 Bytecomputer dp的更多相关文章

  1. 【BZOJ3425】Poi2013 Polarization 猜结论+DP

    [BZOJ3425]Poi2013 Polarization Description 给定一棵树,可以对每条边定向成一个有向图,这张有向图的可达点对数为树上有路径从u到达v的点对(u,v)个数.求最小 ...

  2. 【BZOJ3416】Poi2013 Take-out 栈

    [BZOJ3416]Poi2013 Take-out Description 小F喜欢玩一个消除游戏——take-out 保证k+1|n,保证输入数据有解这是一个单人游戏 游戏者的目标是消除初始时给定 ...

  3. 【BZOJ3417】Poi2013 Tales of seafaring 分层图BFS

    [BZOJ3417]Poi2013 Tales of seafaring Description 一个n点m边无向图,边权均为1,有k个询问 每次询问给出(s,t,d),要求回答是否存在一条从s到t的 ...

  4. 【题解】POJ1934 Trip (DP+记录方案)

    [题解]POJ1934 Trip (DP+记录方案) 题意: 传送门 刚开始我是这么设状态的(谁叫我DP没学好) \(dp(i,j)\)表示钦定选择\(i\)和\(j\)的LCS,然而你会发现这样钦定 ...

  5. 【题解】剪纸条(dp)

    [题解]剪纸条(dp) HRBUST - 1828 网上搜不到题解?那我就来写一篇吧哈哈哈 最优化问题先考虑\(dp\),设\(dp(i)\)表示将前\(i\)个字符(包括\(i\))分割成不相交的回 ...

  6. 【题解】地精部落(DP)

    [题解]地精部落(DP) 设\(f_i\)表示强制第一个是谷的合法方案数 转移枚举一个排列的最大值在哪里,就把序列分成了互不相干的两个部分,把其中\(i-1\choose j-1\)的数字分配给前面部 ...

  7. 【BZOJ-1068】压缩 区间DP

    1068: [SCOI2007]压缩 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 1001  Solved: 615[Submit][Status][ ...

  8. 【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治

    1492: [NOI2007]货币兑换Cash Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 3396  Solved: 1434[Submit][Sta ...

  9. 【递归】油桶问题dp

    问题 : [递归]油桶问题 题目描述 楚继光扬扬得意道:“当日华山论剑,先是他用黯然销魂掌破了我的七十二路空明拳,然后我改打降龙十八掌,却不防他伸开食指和中指,竟是六脉神剑,又胜我一筹.可见天下武学彼 ...

随机推荐

  1. ioc解析

    引述:IoC(控制反转:Inverse of Control)是Spring容器的内核,AOP.声明式事务等功能在此基础上开花结果.但是IoC这个重要的概念却比较晦涩隐讳,不容易让人望文生义,这不能不 ...

  2. c++动态库封装及调用(2、windows下动态库创建)

    DLL即动态链接库(Dynamic-Link Libaray)的缩写,相当于Linux下的共享对象.Windows系统中大量采用了DLL机制,甚至内核的结构很大程度依赖与DLL机制.Windows下的 ...

  3. BZOJ3436_小K的农场_KEY

    题目传送门 差分约束基础,对于每种关系建不同的边,求是否有负环. code: /************************************************************ ...

  4. 西安Uber优步司机奖励政策(8月10日到8月16日)

    1) 工作日(周一到周五)早高峰时间段(7点到9:30点).晚高峰时间段(5点到8点)车费 2.0 倍,每单奖励部分上限35元 例:在高峰时段中,假设行程基本车费为¥15,只要达到奖励前提,最后你将获 ...

  5. 一个只有十行的精简MVVM框架

    本文来自网易云社区. 前言 MVVM模式相信做前端的人都不陌生,去网上搜MVVM,会出现一大堆关于MVVM模式的博文,但是这些博文大多都只是用图片和文字来进行抽象的概念讲解,对于刚接触MVVM模式的新 ...

  6. textview的阴影线

    android:shadowColor="#000000" android:shadowDx="1" android:shadowDy="1" ...

  7. lintcode12 带最小值操作的栈

    实现一个带有取最小值min方法的栈,min方法将返回当前栈中的最小值. 你实现的栈将支持push,pop 和 min 操作,所有操作要求都在O(1)时间内完成. 建一个栈helpStack,用来存放从 ...

  8. 【循环控制器】-(针对中间部分要循环的场景,相当于loadrunner的action部分)

    一般使用 setup线程组 + teardown组 针对中间要循环的部分   使用循环处理器    单独循环中间的部分,相当于loadrunner的action部分

  9. ubuntu networking 与 network-manager

    刚遇到的坑,因为操作不当导致网络中断,于是手动配置了/etc/network/interfaces , 修复了系统之后发现ubuntu-desktop中的有线链接不见了,百度了一下说是networki ...

  10. 饥饿的小易(枚举+广度优先遍历(BFS))

    题目描述 小易总是感觉饥饿,所以作为章鱼的小易经常出去寻找贝壳吃.最开始小易在一个初始位置x_0.对于小易所处的当前位置x,他只能通过神秘的力量移动到 4 * x + 3或者8 * x + 7.因为使 ...