发现最近好少写博客啊(其实是各种摆去了)

更一点吧

这道题要求最小化均方差,其实凭直觉来说就是要使每个块分的比较均匀一点,但是单单想到想到这些还是不够的,

首先f[i][j][k][l][t]表示以(i,j)为左上角,(k,l)为右下角,一共分割的t次的矩形的最小xx,

其中xx是某个与最小均方差挂钩的东西,

通常这种要求推式子的题目都要从小的情况推广到所有情况。

这道题也是一样的,

对于一个被分为x1和x2的矩形而言(分割了一次),用X表示平均数,

那么X=权值和/块数,

那么方差为:[(X - x1)^2 + (X - x2)^2]    /    块数

对于固定的分割次数而言,块数是固定的,所以不管它,

那么我们就是要化简[(X - x1)^2 + (X - x2)^2]

原式=X^2 + x1^2 - 2 * X * x2 + X^2 + x2^2 - 2 * X * x2

=2(X ^ 2) + (x1^2 + x2^2) - 2 * X * (x1 + x2)

观察到x1+ x2就是权值和,是固定的,

而因为块数固定,X也是固定的,因此我们唯一可以改变的就是中间的平方部分,

所以我们的问题就转化为了一个矩形分割n-1次,求最小的平方和,

于是就可以直接dp了

f[i][j][k][l][t]表示以(i,j)为左上角,(k,l)为右下角,一共分割的t次的矩形的最小平方和,

同时为了满足dp性质(要求大状态先求小状态),左上角要倒着枚举,然后右下角正着枚举,

然后枚举分割线,枚举每块小矩形分割了多少次,最后计算一下即可

 #include<bits/stdc++.h>
using namespace std;
#define R register int
#define AC 11
int ll,rr,n;
int f[AC][AC][AC][AC][AC];
int s[AC][AC],sum[AC][AC];
double ans,x;
/*以分两块(分别含有两小块)的合成为例
f[x]=((X - x1) ^ 2 + (X - x2) ^ 2)/2
对分子化简得:2 * X ^ 2 + x1 ^ 2 + x2 ^ 2 - 2 * X * (x1 + x2),
可以发现x1 + x2就是这一块的权值和,X为平均值,也就是权值和/块数,
也就是说对于任意一种分法,影响最终答案的只有x1 ^ 2 + x2 ^ 2这种,
所以只要最小化这个就可以了*/ inline void upmin(int &a,int b)
{
if(b < a) a=b;
} void pre()
{
memset(f,,sizeof(f));
scanf("%d%d%d",&ll,&rr,&n);
for(R i=;i<=ll;i++)
for(R j=;j<=rr;j++)
scanf("%d",&s[i][j]);
for(R i=;i<=ll;i++)
for(R j=;j<=rr;j++)
sum[i][j]=s[i][j] + sum[i-][j] + sum[i][j-] - sum[i-][j-];
for(R i=;i<=ll;i++)
for(R j=;j<=rr;j++)
for(R k=i;k<=ll;k++)
for(R l=j;l<=rr;l++)
{
int a=sum[k][l] - sum[i-][l] - sum[k][j-] + sum[i-][j-];
f[i][j][k][l][]=a * a;
}
/*for(R i=1;i<=ll;i++)
{
for(R j=1;j<=rr;j++)
{
printf("%d ",sum[i][j]);
}
printf("\n");
}*/
} void work()
{
for(R t=;t<n;t++)
for(R i=ll; i ;i--)//为了维护dp的条件,左上角应该要倒着枚举吧
for(R j=rr; j ;j--)//枚举左上角
{
for(R k=i;k<=ll;k++)
for(R l=j;l<=rr;l++)//枚举右上角
{
if(i == k && j == l) continue;
for(R p=j;p<l;p++)//枚举竖着的分界线
for(R tt=;tt<t;tt++)//原来的两块切割次数之和只能为t-1,因为现在切的就是第t次
upmin(f[i][j][k][l][t],f[i][j][k][p][tt] + f[i][p+][k][l][t - tt - ]);
for(R p=i;p<k;p++)//枚举横着的分界线
for(R tt=;tt<t;tt++)//枚举两块分别切了多少次,注意从0开始!!!
upmin(f[i][j][k][l][t],f[i][j][p][l][tt] + f[p+][j][k][l][t - tt - ]);
//printf("%d %d %d %d %d = %d\n",i,j,k,l,t,f[i][j][k][l][t]);
}
}
x=(double)sum[ll][rr] / (double)n;//获取平均值
ans=(double)(n * x * x) + (double)f[][][ll][rr][n-] - (double) * x * sum[ll][rr];
ans/=(double)n;
ans=sqrt(ans);
printf("%.2lf\n",ans);
} int main()
{
// freopen("in.in","r",stdin);
pre();
work();
// fclose(stdin);
return ;
}

[HAOI2007]分割矩阵 DP+推式子的更多相关文章

  1. LuoguP2217 [HAOI2007]分割矩阵 (DP + memorized search)

    int n,m,tim; int mp[N][N], sum[N][N]; double ave,dp[N][N][N][N][N]; inline double DP(int a,int b,int ...

  2. bzoj千题计划186:bzoj1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 #include<cmath> #include<cstdio> #i ...

  3. 【BZOJ1048】 [HAOI2007]分割矩阵

    [BZOJ1048][HAOI2007]分割矩阵 题面 bzoj 洛谷 题解 \(dp[a][b][c][d][num]\)表示将矩形\((a,b,c,d)\)分成\(num\)个的最小方差,然后转移 ...

  4. BZOJ 1048 [HAOI2007]分割矩阵

    1048: [HAOI2007]分割矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 623  Solved: 449[Submit][Status ...

  5. 洛谷P2217 [HAOI2007]分割矩阵

    P2217 [HAOI2007]分割矩阵 题目描述 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n ...

  6. [BZOJ 1048] [HAOI2007] 分割矩阵 【记忆化搜索】

    题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标 ...

  7. BZOJ1048:[HAOI2007]分割矩阵(记忆化搜索DP)

    Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个), 这样分割了(n-1)次后,原矩阵被分割成 ...

  8. 【题解】HAOI2007分割矩阵

    水题盛宴啦啦啦……做起来真的极其舒服,比某些毒瘤题好太多了…… 数据范围极小 --> 状压 / 搜索 / 高维度dp:观察要求的均方差,开始考虑是不是能够换一下式子.我们用\(a_{x}\)来表 ...

  9. 【BZOJ】1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题意:给出一个a×b(a,b<=10)的矩阵,带一个<=100的权值,现在要切割n ...

随机推荐

  1. CLR via c#读书笔记九:字符、字符串和文本处理

    1.在.NET Framework中,字符总是表示成16位unicode代码值(关于unicode.utf8等可以到http://www.ruanyifeng.com/blog/2007/10/asc ...

  2. Express 总结

    Express Express提供了一个轻量级模块,把nodejs的http功能封装在一个简单易用的接口中.Express也扩展了http模块的功能,能轻松处理服务器的路由.响应.cookie和HTT ...

  3. WeTest功能优化第2期:云真机智能投屏,调试告别鼠标

    第2期功能优化目录 [云真机视频映射]云真机画面本地映射[兼容性测试报告]新增问题机型聚类功能[新增Android9.0]同步上线最新安卓系统 本期介绍的云测产品功能优化,既有重磅级技术突破,也有报告 ...

  4. 吴裕雄 python 机器学习——层次聚类AgglomerativeClustering模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import cluster from sklearn.metrics ...

  5. 「日常训练」Jin Yong’s Wukong Ranking List(HihoCoder-1870)

    题意与分析 2018ICPC北京站A题. 题意是这样的,给定若干人的武力值大小(A B的意思是A比B厉害),问到第几行会出现矛盾. 这题不能出现思维定势,看到矛盾就是矛盾并查集--A>B.A&g ...

  6. JAVA基础学习之路(三)类定义及构造方法

    类的定义及使用 一,类的定义 class Book {//定义一个类 int price;//定义一个属性 int num; public static int getMonney(int price ...

  7. HDU 1394Minimum Inversion Number

    The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that ...

  8. Java进阶知识点:不要只会写synchronized - JDK十大并发编程组件总结

    一.背景 提到Java中的并发编程,首先想到的便是使用synchronized代码块,保证代码块在并发环境下有序执行,从而避免冲突.如果涉及多线程间通信,可以再在synchronized代码块中使用w ...

  9. Java程序员自我介绍

    有关Java程序员的面试自我介绍范文(一) 我叫XXX,今年21岁,毕业于XX解放军信息工程大学计算机科学与技术专业,拥有扎实的Core Java基础,良好的编程风格;熟悉JSP+Servlet+Ja ...

  10. 普通Java类获取Spring的Bean的方法

    普通Java类获取Spring的Bean的方法 在SSH集成的前提下.某些情况我们需要在Action以外的类中来获得Spring所管理的Service对象. 之前我在网上找了好几好久都没有找到合适的方 ...