题目描述

有N个位置,M个操作。操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c。如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是多少。

输入

第一行N,M
接下来M行,每行形如1 a b c或2 a b c

输出

输出每个询问的结果

样例输入

2 5
1 1 2 1
1 1 2 2
2 1 1 2
2 1 1 1
2 1 2 3

样例输出

1
2
1


题解

本蒟蒻并不会写整体二分,所以写了树套树

17.12.23 UPD:比树套树优雅到不知哪里去了的整体二分题解

其实这道题想到方法的话实现起来还是非常容易的。

注意题目中说的是“每个位置加入一个数c”,不是“加上”,也就是说不必支持修改,但必须支持插入。

所以需要选择权值线段树或Treap。

如果把权值线段树或Treap放在内层,区间线段树放在外层,那么会不方便查询(详见 bzoj3194 中子任务2),时间复杂度为O(nlog^3n),TLE;同时也不便于修改。

所以不能把权值线段树或Treap放在内层,必须放在外层,外层就只能选择权值线段树。

把权值线段树放在外层,区间线段树放在内层的话,每个最内层节点表示区间内权值在指定范围内的数的个数。

这样修改时在外层查找对应区间,在内层区间+1,使用lazy标记可以保证时间复杂度。

查询时查的是第k大,所以需要先确定范围。如果权值线段树的右子树对应的区间线段树的区间和(线段树区间查询)大于等于k,即右半部分权值中含有k大数,则在右边查找;否则在左边查找。

注意要把两棵树分开(表示代码可能分的不太清楚。。。),千万不要弄混。

在我的代码中,外层权值线段树是用一般的完全二叉树储存方式(x<<1,x<<1|1),而内层区间线段树是用动态开点的储存方式。

而这里的pushdown、update和query这前三个函数是内层区间线段树的函数;modify、solve是外层权值线段树的函数。

另外,数据经加强后会有负数,所以应把原数+n+1处理。

另外,本题会爆int,而long long可能会TLE,最好是用unsigned int。

#include <cstdio>
#include <algorithm>
#define N 1000010
#define M 20000010
using namespace std;
int n , root[N] , ls[M] , rs[M] , tot;
unsigned sum[M] , tag[M];
void pushdown(int l , int r , int x)
{
if(tag[x])
{
int mid = (l + r) >> 1;
if(!ls[x]) ls[x] = ++tot;
if(!rs[x]) rs[x] = ++tot;
sum[ls[x]] += (mid - l + 1) * tag[x] , tag[ls[x]] += tag[x];
sum[rs[x]] += (r - mid) * tag[x] , tag[rs[x]] += tag[x];
tag[x] = 0;
}
}
void update(int b , int e , int l , int r , int &x)
{
if(!x) x = ++tot;
if(b <= l && r <= e)
{
sum[x] += (r - l + 1) , tag[x] ++ ;
return;
}
pushdown(l , r , x);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , l , mid , ls[x]);
if(e > mid) update(b , e , mid + 1 , r , rs[x]);
sum[x] = sum[ls[x]] + sum[rs[x]];
}
unsigned query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e) return sum[x];
pushdown(l , r , x);
int mid = (l + r) >> 1;
unsigned ans = 0;
if(b <= mid) ans += query(b , e , l , mid , ls[x]);
if(e > mid) ans += query(b , e , mid + 1 , r , rs[x]);
return ans;
}
void modify(int b , int e , int p , int l , int r , int x)
{
update(b , e , 1 , n , root[x]);
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) modify(b , e , p , l , mid , x << 1);
else modify(b , e , p , mid + 1 , r , x << 1 | 1);
}
int solve(int b , int e , unsigned a , int l , int r , int x)
{
if(l == r) return l;
int mid = (l + r) >> 1;
unsigned tmp = query(b , e , 1 , n , root[x << 1 | 1]);
if(tmp >= a) return solve(b , e , a , mid + 1 , r , x << 1 | 1);
else return solve(b , e , a - tmp , l , mid , x << 1);
}
int main()
{
int m , opt , x , y , z;
unsigned t;
scanf("%d%d" , &n , &m);
while(m -- )
{
scanf("%d%d%d" , &opt , &x , &y);
if(opt == 1) scanf("%d" , &z) , modify(x , y , z + n + 1 , 1 , 2 * n + 1 , 1);
else scanf("%u" , &t) , printf("%d\n" , solve(x , y , t , 1 , 2 * n + 1 , 1) - n - 1);
}
return 0;
}

【bzoj3110】[Zjoi2013]K大数查询 权值线段树套区间线段树的更多相关文章

  1. BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...

  2. 洛谷P3332 [ZJOI2013]K大数查询 权值线段树套区间线段树_标记永久化

    Code: #include <cstdio> #include <algorithm> #include <string> #include <cstrin ...

  3. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

  4. BZOJ3110[Zjoi2013]K大数查询(树状数组+整体二分)

    3110 [Zjoi2013]K大数查询 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a ...

  5. BZOJ3110 [Zjoi2013]K大数查询 树套树 线段树 整体二分 树状数组

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3110 题意概括 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位 ...

  6. [BZOJ3110] [Zjoi2013] K大数查询 (树套树)

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置 ...

  7. bzoj3110 [Zjoi2013]K大数查询——线段树套线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3110 外层权值线段树套内层区间线段树: 之所以外层权值内层区间,是因为区间线段树需要标记下传 ...

  8. BZOJ3110: [Zjoi2013]K大数查询

    喜闻乐见的简单树套树= =第一维按权值建树状数组,第二维按下标建动态开点线段树,修改相当于第二维区间加,查询在树状数组上二分,比一般的线段树还短= =可惜并不能跑过整体二分= =另外bzoj上的数据有 ...

  9. bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】

    //========================== 蒟蒻Macaulish:http://www.cnblogs.com/Macaulish/  转载要声明! //=============== ...

随机推荐

  1. 一起来写段JS drag代码

    http://www.cnblogs.com/275095923/archive/2010/12/09/1901352.html

  2. 宁波Uber优步司机奖励政策(1月4日~1月10日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. CC2541工程优化等级的问题

    1. 调试工程的时候发现,优化等级稍微调高一级,就容易出问题,只能用None,其他等级会出现数据丢失的现象.

  4. 你需要掌握的http知识

    作为一名前端er,http是我们必须要掌握的,那么我们到底需要掌握哪些东西呢 一.基础知识 这里我们介绍与http相关的TCP.IP.DNS.url.uri 1.IP IP地址是我们很熟悉的东西,最常 ...

  5. jmeter "you cannot switch bacause data cannot be converted to target Tab data,empty data to switch"报错

    jmeter "you cannot switch bacause data cannot be converted to target Tab data,empty data to swi ...

  6. C if 判断 else 否则

    #include <stdio.h> int main(int argc, char **argv) { //新建三个变量进行比较 int a,b,c; //输入三个变量的值scanf(& ...

  7. 【system.folder】使用说明

    对象:system.folder 说明:提供一系列针对文件夹的操作 目录: 方法 返回 说明 system.folder.exists(folderPath) [True | False] 检测指定文 ...

  8. Android开发-API指南-<receiver>

    <receiver> 英文原文:http://developer.android.com/guide/topics/manifest/receiver-element.html 采集(更新 ...

  9. yun rpm

    RPM:RedHat Package Manager的简称,是一种数据库记录的方式的管理机制.当需要安装的软件的依赖软件都已经安装,则继续安装,否则不予安装. 特点:1.已经编译并打包完成2.软件的信 ...

  10. 持续集成之TeamCity 配置

    xcopy /S /Y CodeFirstDemo\CodefirstDemo.Web D:\publish\welcome\Web