LG2120 [ZJOI2007]仓库建设
题意
L公司有N个工厂,由高到底分布在一座山上。
工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。
突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。
对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。
假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:
- 工厂i距离工厂1的距离Xi(其中X1=0);
- 工厂i目前已有成品数量Pi;
- 在工厂i建立仓库的费用Ci;
请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
\(N \leq 10^6\)
分析
容易列出dp方程,设\(dp[i]\)表示在\(i\)建仓库,\(1 \sim i\)的最小费用。
\[
dp[i]=\min\limits_{0 \leq j<i} \{dp[j]+x[i]\times\sum\limits_{k=j+1}^{i}(p[k]) -\sum\limits_{k=j+1}^{i}(x[k] \times p[k])\}+c[i]
\]
意思是,运到\(i\)的费用相当于都从\(i\)运到\(1\)的费用减去各自运到\(1\)的费用。
那么设\(sp[i]=\sum_{j=1}^i p[j] , s[i] = \sum_{j=1}^i x[j] * p[j]\),方程就可以化为\(O(n^2)\)。
设\(j > k\),且从\(j\)转移优于从\(k\)转移,可以得到
\[
\frac{(dp[j]+s[j])-(dp[k]+s[k])}{sp[j]-sp[k]}<x[i]
\]
\(sp\)递增,又是小于号,所以维护下凸包。又因为\(x\)单调增,所以可以用单调队列优化。
时间复杂度\(O(n)\)
代码
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<algorithm>
#include<bitset>
#include<cassert>
#include<ctime>
#include<cstring>
#define rg register
#define il inline
#define co const
template<class T>il T read()
{
rg T data=0;
rg int w=1;
rg char ch=getchar();
while(!isdigit(ch))
{
if(ch=='-')
w=-1;
ch=getchar();
}
while(isdigit(ch))
{
data=data*10+ch-'0';
ch=getchar();
}
return data*w;
}
template<class T>T read(T&x)
{
return x=read<T>();
}
using namespace std;
typedef long long ll;
co int N=1e6+2;
ll x[N],p[N],c[N];
ll sp[N],s[N],dp[N];
ll Up(int j,int k)
{
return dp[j]+s[j]-dp[k]-s[k];
}
ll Down(int j,int k)
{
return sp[j]-sp[k];
}
ll Cal(int i,int j)
{
return dp[j]+x[i]*(sp[i]-sp[j])-(s[i]-s[j])+c[i];
}
int q[N];
int main()
{
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read<int>();
for(int i=1;i<=n;++i)
{
read(x[i]),read(p[i]),read(c[i]);
sp[i]=sp[i-1]+p[i];
s[i]=s[i-1]+x[i]*p[i];
}
int head=0,tail=0;
q[tail++]=0;
for(int i=1;i<=n;++i)
{
while(head+1<tail&&Up(q[head+1],q[head])<=x[i]*Down(q[head+1],q[head]))
++head;
dp[i]=Cal(i,q[head]);
while(head+1<tail&&Up(i,q[tail-1])*Down(q[tail-1],q[tail-2])<=Up(q[tail-1],q[tail-2])*Down(i,q[tail-1]))
--tail;
q[tail++]=i;
}
printf("%lld\n",dp[n]);
return 0;
}
LG2120 [ZJOI2007]仓库建设的更多相关文章
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- 【BZOJ 1096】 [ZJOI2007]仓库建设 (斜率优化)
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3940 Solved: 1736 Description ...
- bzoj 1096: [ZJOI2007]仓库建设 斜率優化
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2242 Solved: 925[Submit][Statu ...
- bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3234 Solved: 1388[Submit][Stat ...
- BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )
dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...
- 边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法
[原标题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 1998 Solved: 816 [id=10 ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- 斜率优化入门学习+总结 Apio2011特别行动队&Apio2014序列分割&HZOI2008玩具装箱&ZJOI2007仓库建设&小P的牧场&防御准备&Sdoi2016征途
斜率优化: 额...这是篇7个题的题解... 首先说说斜率优化是个啥,额... f[i]=min(f[j]+xxxx(i,j)) ; 1<=j<i (O(n^2)暴力)这样一个式子,首 ...
随机推荐
- Linux:查看磁盘空间占用情况
Linux:查看磁盘空间占用情况 工作中有时被分配的测试机空间不大,经常遇到磁盘空间占满的情况.排查过程如下: 一.首先使用df -h 命令查看磁盘剩余空间,通过以下图看出/目录下的磁盘空间已经被占满 ...
- Qt debug和release
debug会默认给变量赋初始值,但是release不会. 所以: 在头文件中声明指针P* p时,最好给它初始化:P* p=NULL; 不然有可能造成野指针的情况
- QT中没有byte
QT里没有没有byte数据类型的 自己定义:#define byte unsigned char
- Spring Boot 中全局异常处理器
Spring Boot 中全局异常处理器,就是把错误异常统一处理的方法.等价于Springmvc中的异常处理器. 步骤一:基于前面的springBoot入门小demo修改 步骤二:修改HelloCon ...
- cnetos升级内核玩docker
最近在学习docker容器.在阿里云上的服务器内核版本比较低.所以,需要先升级. 查看内核命令:uname -r 升级内核,网上也有很多种方式.一般都是下载内核包,然后自己编译.不过这种方式需要注意的 ...
- Java解析XML的四种方法详解 - 转载
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML.本文将详细介绍用Java解析XML的四种方法 在做一般的XML数据交换过程中,我更乐意传递XML字符串,而不是格式化 ...
- Largest Rectangle in Histogram, 求矩形图中最大的长方形面积
问题描述: Given n non-negative integers representing the histogram's bar height where the width of each ...
- Hibernate与JDBC、EJB、JDO的比较
常用的数据库操作包括:JDBC.EJB.JDO以及Hibernate.它的各有优缺点: (1) JDBC:多数Java开发人员是用JDBC来和数据库进行通信,它可以通过DAO模式进行改善和提高.但这种 ...
- PHP服务器变量$_SERVER
常用的就几个,自己print_r($_SERVER); 看看. $_SERVER['PHP_SELF'] #当前正在执行脚本的文件名,与 document root相关. $_SERVER['argv ...
- 关于Android中根据ID名动态获取资源的两个方法
在开发中, 我们习惯了类似下面这种方式去实现引用资源: context.getResources().getDrawable(R.drawable.flower); 但是,当我们提前知道这个资源的id ...