快速沃尔什变换FWT
快速沃尔什变换\(FWT\)
是一种可以快速完成集合卷积的算法。
什么是集合卷积啊?
集合卷积就是在集合运算下的卷积。比如一般而言我们算的卷积都是\(C_i=\sum_{j+k=i}A_j*B_k\),而集合卷积计算的就是\(C_i=\sum_{j\otimes k=i}A_j*B_k\),其中\(\otimes\)是一种集合运算,可以是与、或、异或。
类似于快速傅里叶变换\(FFT\),\(FWT\)也需要寻求一种变换方式\(FWT(A)\),使\(FWT(C)=FWT(A)*FWT(B)\),其中\(*\)运算就是数组对应下标相乘,时间复杂度是\(O(n)\)的。
或(or)运算的FWT
构造\(FWT(A)=A'\),其中\(A'[i]=\sum_{j\subseteq i}A[j]\)。
这样就能满足\(C'=A'*B'\)了。
如何构造?
考虑把\(A\)分成前后两段\(A_0,A_1\),假设\(A\)的长度为\(2^k\)。
那么\(A_0\)对应的二进制中第\(k-1\)位一定是\(0\),\(A_1\)对应的二进制中第\(k-1\)位一定是\(1\)。
所以\(FWT(A)=merge(FWT(A_0),FWT(A_1)+FWT(A_0))\),其中\(merge\)的意思是把前后两段拼接起来,因为前后两段的长度都是\(2^{k-1}\)。
至于\(IFWT?\)
倒推一下就好了。\(IFWT(A')=merge(IFWT(A'_0),IFWT(A'_1)-IFWT(A'_0))\)。
代码:
void fwt_or(ll *P,int len,int opt){
for (int i=1;i<len;i<<=1)
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k)
P[j+k+i]+=P[j+k]*opt;
}
与(and)运算的FWT
与或同理。
构造\(FWT(A)=A'\),\(A'[i]=\sum_{i\subseteq j}A[j]\)。
\(FWT(A)=merge(FWT(A_0)+FWT(A_1),FWT(A_1))\)
\(IFWT(A')=merge(IFWT(A'_0)-IFWT(A'_1),IFWT(A'_1))\)。
代码:
void fwt_and(ll *P,int len,int opt){
for (int i=1;i<len;i<<=1)
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k)
P[j+k]+=P[j+k+i]*opt;
}
异或(xor)运算的FWT
直接上结论吧。
\(FWT(A)=merge(FWT(A_0)+FWT(A_1),FWT(A_0)-FWT(A_1))\)
\(IFWT(A)=merge(\frac{IFWT(A'_0)+IFWT(A'_1)}{2},\frac{IFWT(A'_0)-IFWT(A'_1)}{2})\)。
证明出门右转
代码:
void fwt(int *P,int len,int opt){
for (int i=1;i<len;i<<=1)
for (int p=i<<1,j=0;j<len;j+=p)
for (int k=0;k<i;++k)
{
int x=P[j+k],y=P[j+k+i];
P[j+k]=1ll*opt*(x+y)%mod;
P[j+k+i]=1ll*opt*(x-y+mod)%mod;
}
}
如果是\(IFWT\)的话就让\(opt=\frac{mod+1}2\)就好了。
快速沃尔什变换FWT的更多相关文章
- 一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记
一个数学不好的菜鸡的快速沃尔什变换(FWT)学习笔记 曾经某个下午我以为我会了FWT,结果现在一丁点也想不起来了--看来"学"完新东西不经常做题不写博客,就白学了 = = 我没啥智 ...
- 集合并卷积的三种求法(分治乘法,快速莫比乌斯变换(FMT),快速沃尔什变换(FWT))
也许更好的阅读体验 本文主要内容是对武汉市第二中学吕凯风同学的论文<集合幂级数的性质与应用及其快速算法>的理解 定义 集合幂级数 为了更方便的研究集合的卷积,引入集合幂级数的概念 集合幂级 ...
- 【学习笔鸡】快速沃尔什变换FWT
[学习笔鸡]快速沃尔什变换FWT OR的FWT 快速解决: \[ C[i]=\sum_{j|k=i} A[j]B[k] \] FWT使得我们 \[ FWT(C)=FWT(A)*FWT(B) \] 其中 ...
- 关于快速沃尔什变换(FWT)的一点学习和思考
最近在学FWT,抽点时间出来把这个算法总结一下. 快速沃尔什变换(Fast Walsh-Hadamard Transform),简称FWT.是快速完成集合卷积运算的一种算法. 主要功能是求:,其中为集 ...
- 快速沃尔什变换 FWT 学习笔记【多项式】
〇.前言 之前看到异或就担心是 FWT,然后才开始想别的. 这次学了 FWT 以后,以后判断应该就很快了吧? 参考资料 FWT 详解 知识点 by neither_nor 集训队论文 2015 集合幂 ...
- Codeforces 662C(快速沃尔什变换 FWT)
感觉快速沃尔什变换和快速傅里叶变换有很大的区别啊orz 不是很明白为什么位运算也可以叫做卷积(或许不应该叫卷积吧) 我是看 http://blog.csdn.net/liangzhaoyang1/ar ...
- HDU 5977 Garden of Eden (树形dp+快速沃尔什变换FWT)
CGZ大佬提醒我,我要是再不更博客可就连一月一更的频率也没有了... emmm,正好做了一道有点意思的题,就拿出来充数吧=.= 题意 一棵树,有 $ n (n\leq50000) $ 个节点,每个点都 ...
- BZOJ4589 Hard Nim(快速沃尔什变换FWT)
这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...
- 快速沃尔什变换(FWT)学习笔记 + 洛谷P4717 [模板]
FWT求解的是一类问题:\( a[i] = \sum\limits_{j\bigoplus k=i}^{} b[j]*c[k] \) 其中,\( \bigoplus \) 可以是 or,and,xor ...
随机推荐
- kali 2016:mount ntfs 分区只读 --Falling back to read-only mount because the NTFS partition is in an unsafe state.
mount ntfs 分区 mount /dev/sdb1 /mnt/d 提示: The disk contains an unclean file system (0, 0).Metadata ke ...
- Linux 下的 core dump
core dump 的基本概念 当一个进程要异常终止时 ,可以选择把进程的用户空间内存数据全部保存到磁盘上 ,文件名通常是 core, 这叫做 Core Dump.通常情况下,core文件会 ...
- JavaWeb XML
1. XML详解 1.1. XML介绍 1.1.1. 什么是XML XML的全称为eXtensible Markup Language,译为可扩展标记语言.XML语法上和HTML比较相似,但HTML中 ...
- v4l2中的多流机制
一直在搞camera,对v4l2也比较熟悉了,今天写文章说点自己的看法 对于v4l2,对多流的支持是比较弱的,只是一个流.但现在的camera 硬件,能支持多个流同事工作,所以又必要对v4l2的api ...
- Registering Components-->Autofac registration(include constructor injection)
https://autofaccn.readthedocs.io/en/latest/register/registration.html Registration Concepts (有4种方式来 ...
- Filter FASTA files
Use a regular expression for filtering sequences by id from a FASTA file, e.g. just certain chromoso ...
- [转]Markdown 公式指导手册(包含LaTeX)
Cmd Markdown 公式指导手册 本文为转载文章,并且由于LaTeX的可能不能全部兼容,所以可能有部分公式无法在博客园显示,可以移步原网站. 本文固定链接: https://www.zybulu ...
- Coldfusion8 读取HASH工具
#!/usr/bin/env python #-*- coding:utf- -*- import sys import threading import urllib import httplib ...
- webstorm打开带有node_modules文件夹的工程时很卡
ctrl+alt+s打开settings 在webstorm中配置这个就可以不加载出来node_modules使页面加载快
- 如何进行数据库,比如ORACLE,SQL SERVER的逆向工程,将数据库导入到PowerDesigner中
Oracle的反向工程就是指将Oracle中的数据库,当然也可以是SQL Server中的数据库导入到PD中,这个需要建立一个数据库的链接,然后进行逆向工程的操作. 第一步:建立数据库的链接: Pow ...