bzoj3232圈地游戏——0/1分数规划+差分建模+判环
Description
Input
Output
Sample Input
1 3 3 3
1 3 1 1
3 3 1 0
100 1 1 1
97 96 1 1
1 93 92 92
1 1 90 90
98 1 99 99 1
95 1 1 1 94
1 91 1 1 89
Sample Output
HINT

题解:
0/1分数规划,二分mid
转化为是否存在一组解
使得∑vi-mid*∑ci<=0
即,每个格线有一个边权,每个格有权,是否能找到一个封闭的图形,使得内部和-边权和>0
发现和一般的不同的是,每个元素不是可以直接访问然后取值的。
因为还有格线和封闭起来的块的问题。
假设先不管块的值。
我们发现题目是一个从某个点出发,再回到某个点,然后判断是否有一条>0的路径。
即,图中有没有正环。
那么,块的值怎么办?
可以前缀差分!!
sum[i][j]表示,∑val[1~i][j]
对于一个横边:(i,j)->(i,j+1),边权是:mid*c+sum[i][j]
(i,j)->(i,j-1),边权是:mid*c-sum[i][j]
竖边就是mid*c
那么对于一个闭合封闭图形,必然可以把块的贡献看作是一列一列的。
并且,如果这是一个正环,那么存在从左下角出发往右走再绕回来,然后边权之和恰好有∑sum[i][j]-sum[i-p][j]
就差分出来格内部的权值和了。
注意,最短路的时候,为了卡精度,但是赋值时不能dis[dx][dy]=dis[x][y]+w-eps或者+eps
eps只在比较的时候用,赋值就不能用了。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=;
const double eps=0.000001;
int n,m;
int val[N][N];
int sum[N][N];
int mv[][]={{+,},{-,},{,+},{,-}};
int co[N][N][];
double dis[N][N];
bool vis[N][N];
int in[N][N];//ci in queue
struct node{
int has,x,y;
};
queue<node>q;
double mid;
bool spfa(){
while(!q.empty()) q.pop();
node st;
st.has=,st.x=,st.y=;
dis[][]=0.00;
q.push(st);
while(!q.empty()){
node now=q.front();q.pop();
vis[now.x][now.y]=;
if(now.has>(n+)*(m+)+) return true;
for(int i=;i<;i++){
int dx=now.x+mv[i][],dy=now.y+mv[i][];
if(dx<||dx>n) continue;
if(dy<||dy>m) continue;
double w=-1.0*mid*co[now.x][now.y][i];
if(i==) w+=sum[now.x][now.y+];
if(i==) w-=sum[now.x][now.y];
if(dis[dx][dy]+0.0001<dis[now.x][now.y]+w){
dis[dx][dy]=dis[now.x][now.y]+w;
in[dx][dy]++;
if(in[dx][dy]>(n+)*(m+)+) return true;
if(!vis[dx][dy]){
vis[dx][dy]=;
node tmp;
tmp.has=now.has+;
tmp.x=dx,tmp.y=dy;
q.push(tmp);
}
}
}
}
return false;
}
bool che(){
memset(dis,0xcf,sizeof dis);
memset(in,,sizeof in);
memset(vis,,sizeof vis);
if(spfa()) return true;
}
int main(){
scanf("%d%d",&n,&m);
int mx=;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&val[i][j]);
mx+=val[i][j];
sum[i][j]=sum[i-][j]+val[i][j];
}
}int t;
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&t);
co[i][j-][]=co[i][j][]=t;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
scanf("%d",&t);
co[i-][j][]=co[i][j][]=t;
}
}
double l=0.00,r=1.0*mx;
double ans;
while(r-l>eps){
mid=(l+r)/2.0;
if(che()) l=mid,ans=mid;
else r=mid;
}
printf("%.3lf",ans);
return ;
}
bzoj3232圈地游戏——0/1分数规划+差分建模+判环的更多相关文章
- bzoj 3232 圈地游戏——0/1分数规划(或网络流)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3232 当然是0/1分数规划.但加的东西和减的东西不在一起,怎么办? 考虑把它们合在一起.因为 ...
- Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)
题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- poj 2976 Dropping tests 0/1分数规划
0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...
- LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划
题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...
- poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】
含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解. Desert King Time Limit: 3000MS Memory Li ...
- POJ - 2976 Dropping tests && 0/1 分数规划
POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...
- [SDOI2017]新生舞会 0/1分数规划
---题面--- 题解: 0/1分数规划,,,但是竟然有诡异的精度问题???因为这个被卡了好久 中途还写过一次KM,,,结果陷入死循环,,,我大概是写了一个假KM,,,于是放弃KM,回来调费用流 这个 ...
- Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...
随机推荐
- 使用postman实现半自动化
前些日子项目要上一个活动,其中有一个功能是幸运大转盘,用户可以随机抽奖,奖品有多种满减券及多种商品,但是奖品都是有抽中概率的,且有的商品还设置有库存,所以测试点便是测试抽奖的概率和库存.接下来拆分一下 ...
- 在Unity中使用LitJson解析json文件
LitJson 这个库需要找资源,找到LitJson.dll后将它放在Assets文件夹下,在脚本中使用using引入即可 测试代码 json文件: {"Archice":[{&q ...
- Python中一些糟糕的语法!你遇到过吗?还知道那些?
Python是一门语法优雅,功能强大,开发效率高,应用领域广泛的解释性语言. 其有非常多的优点,但是也并不是完美的,除了大家都知道的执行速度不够快,Python2和Python3的兼容问题,以及GIL ...
- 已有海外版Office365,如何开通相同Tenant的Azure
下面这个步骤是开通海外版Azure的测试账号,请了解! 翻到如图位置 点击免费开始 下一步 输入验证代码,此页没截图 使用信用卡,需要visa或master 下一步认证完就可以使用,没有继续截图
- Ext JS 6学习文档-第6章-高级组件
Ext JS 6学习文档-第6章-高级组件 高级组件 本章涵盖了高级组件,比如 tree 和 data view.它将为读者呈现一个示例项目为 图片浏览器,它使用 tree 和 data view 组 ...
- 软工2017团队协作第七周——个人PSP
10.27 --11.2本周例行报告 1.PSP(personal software process )个人软件过程. 类型 任务 开始时间 结束时间 中断时间 实际用时 ...
- 总结get和post区别
参考博文: 浅谈HTTP中Get与Post的区别 1. 数据传递方向: Get是向服务器发索取数据的一种请求,Post是向服务器提交数据的一种请求 (都是请求,并不是一个取一个发) Get:①用于获取 ...
- ajax 返回值问题
错误示例:function returnFlag(){ $.ajax({ type:"post", dataType:"json", data:JSON.str ...
- ubuntu中下载sublime相关问题
1.SublimeText3的安装 在网上搜索了一些ubuntu下关于sublime-text-3安装的方法,在这里针对自己尝试的情况进行反馈: 方法一(未成功): 在终端输入以下代码: sudo a ...
- <Effective C++>读书摘要--Inheritance and Object-Oriented Design<二>
<Item 36> Never redefine an inherited non-virtual function 1.如下代码通过不同指针调用同一个对象的同一个函数会产生不同的行为Th ...