传送门

另一个传送门

终于把心头大恨切掉了……后缀自动机大法好,从此抛弃后缀数组哈哈……(说的跟你会写后缀数组似的

好像网上的题解大多都是后缀数组?看了看表示理解不能,那我这份后缀自动机的题解就写详细点好了……

题目跟LCP有关,不难想到后缀树,对反串建后缀自动机之后得到的parent树就是原串的后缀树,之后的操作就在parent树上乱搞就行了。

询问都是询问s[a..b]中的所有子串和s[c..d]的LCP长度的最大值,显然s[a..b]的子串可以直接改成s[a..b]的后缀,那么就有

$ans=\min\{\max_{a\le i\le b}\{\min\{LCP(i,c),b-i+1\}\},d-c+1\}$

记黑点为每个前缀对应的节点,如果没有b-i+1的限制的话,问题就变成了每次询问c与所有编号位于[a,b]的黑点的所有LCA中深度最大的那一个的深度,显然是可以直接上主席树+倍增的,单次询问$O(log^2n)$(@树白黑)。

现在有了b-i+1的限制,可以二分答案,设当前答案为M,任务就变成了判定答案能否$\ge M$。显然只有$b-i+1\ge M$的i合法(即可以使答案$\ge M$),移项得$i\le b-M+1$,再加上$a\le i\le b$的限制即可得出合法的i的范围,再用倍增找到最浅的深度$\ge M$的点(因为这个点要作为深度最小的LCA,或者是这个LCA的祖先),询问一下这个点的子树中是否存在一个编号在合法范围内的黑点即可(因为这个点一定是c的祖先,因此只要子树中有黑点就说明深度最小的LCA不会比它浅),有则说明答案$\ge M$,否则说明答案<M,调整下一次二分即可。

询问子树中是否有黑点可以用主席树,那么每次判定的复杂度就是倍增$O(logn)$+主席树$O(logn)$=$O(logn)$,加上二分答案后单次询问$O(log^2n)$,还是在线算法(虽然大多都是在线不过听说有写离线的……?)

代码里的二分可以保证$M\ge 1$,因此没有判$i\le b$的限制。

 /**************************************************************
Problem: 4556
User: hzoier
Language: C++
Result: Accepted
Time:12996 ms
Memory:120180 kb
****************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
const int maxn=;
void expand(int);
void dfs(int);
void build(int,int,int&,int);
void query(int,int,int,int);
vector<int>G[maxn];
int SAM_root,last,SAM_cnt=,val[maxn]={},par[maxn]={},go[maxn][]={{}};
int sm[maxn<<],lc[maxn<<],rc[maxn<<]={},cnt=,root[maxn]={};
int f[maxn][]={{}},dfn[maxn],finish[maxn],tim=;
char S[maxn];
int n,m,iter[maxn],k=,a,b,c,d=,x,r,s,t,tmp;
int main(){
SAM_root=last=++SAM_cnt;
scanf("%d%d%s",&n,&m,S+);
for(int i=n;i;i--){
expand(S[i]-'a');
iter[i]=last;
}
for(int i=;i<=SAM_cnt;i++)G[par[i]].push_back(i);
dfs(SAM_root);
for(int i=;i<=n;i++){
x=dfn[iter[i]];
build(,tim,root[i],root[i-]);
}
for(int j=;j<=k;j++)for(int i=;i<=tim;i++)f[i][j]=f[f[i][j-]][j-];
while(m--){
scanf("%d%d%d%d",&a,&b,&c,&d);
int L=,R=b-a+;
while(L<=R){
int M=(L+R)>>;
x=iter[c];
tmp=;
if(val[x]>=M){
for(int i=k;i>=;i--)if(val[f[x][i]]>=M)x=f[x][i];
s=dfn[x];
t=finish[x];
if(a<=b-M+)query(,tim,root[b-M+],root[a-]);
}
if(tmp)L=M+;
else R=M-;
}
printf("%d\n",min(R,d-c+));
}
return ;
}
void expand(int c){
int p=last,np=++SAM_cnt;
val[np]=val[p]+;
while(p&&!go[p][c]){
go[p][c]=np;
p=par[p];
}
if(!p)par[np]=SAM_root;
else{
int q=go[p][c];
if(val[q]==val[p]+)par[np]=q;
else{
int nq=++SAM_cnt;
val[nq]=val[p]+;
memcpy(go[nq],go[q],sizeof(go[q]));
par[nq]=par[q];
par[np]=par[q]=nq;
while(p&&go[p][c]==q){
go[p][c]=nq;
p=par[p];
}
}
}
last=np;
}
void dfs(int x){
dfn[x]=++tim;
d++;
while((<<k)<d)k++;
for(int i=;i<(int)G[x].size();i++){
f[G[x][i]][]=x;
dfs(G[x][i]);
}
finish[x]=tim;
d--;
}
void build(int l,int r,int &rt,int pr){
sm[rt=++cnt]=sm[pr]+;
if(l==r)return;
lc[rt]=lc[pr];
rc[rt]=rc[pr];
int mid=(l+r)>>;
if(x<=mid)build(l,mid,lc[rt],lc[pr]);
else build(mid+,r,rc[rt],rc[pr]);
}
void query(int l,int r,int rt,int pr){
if(!rt&&!pr)return;
if(s<=l&&t>=r){
tmp+=sm[rt]-sm[pr];
return;
}
int mid=(l+r)>>;
if(s<=mid)query(l,mid,lc[rt],lc[pr]);
if(t>mid)query(mid+,r,rc[rt],rc[pr]);
}

一个细节:

一开始觉得二分答案可以直接换成一边倍增上跳一边判定当前点是否可行,后来发现这样是错的,因为答案不一定是c的某个祖先的深度(比如有个点深度是2,父亲的深度是0,可是答案是1)……当然判定当前点是否可行的时候再二分一下也可以,不过这样好像会多一个log……

话说很久之前就想写这题了,然后题意各种弄不清+网上的后缀数组题解各种看不懂=无限期跳票,今天心血来潮读了一遍题才弄清题意,然后找了几份后缀数组的题解还是没怎么看懂……无奈自己脑补了一发后缀自动机的做法,然而为啥跑得这么慢……明明是同样的做法,我比ad学长慢了整整2s,比后缀数组众更是慢到不知哪里去了……

Tjoi2016&Heoi2016 字符串的更多相关文章

  1. Bzoj 4556: [Tjoi2016&Heoi2016]字符串

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 177  Solved: 92[Sub ...

  2. Bzoj4556: [Tjoi2016&Heoi2016]字符串 后缀数组

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 169  Solved: 87[Sub ...

  3. 4556: [Tjoi2016&Heoi2016]字符串

    4556: [Tjoi2016&Heoi2016]字符串 链接 分析: 首先可以二分这个长度.此时需要判断是否存在一个以b结尾的前缀,满足与[c,d]的lcp大于等于mid. 如果我们把串翻转 ...

  4. [BZOJ4556][Tjoi2016&Heoi2016]字符串 后缀数组+主席树

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MB Description 佳媛姐姐过生日的时候,她的小 ...

  5. 【BZOJ4556】[Tjoi2016&Heoi2016]字符串 后缀数组+二分+主席树+RMQ

    [BZOJ4556][Tjoi2016&Heoi2016]字符串 Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一 ...

  6. [BZOJ4556][TJOI2016&&HEOI2016]字符串(二分答案+后缀数组+RMQ+主席树)

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1360  Solved: 545[S ...

  7. [BZOJ4556][Tjoi2016&Heoi2016]字符串 主席树+二分+倍增+后缀自动机

    4556: [Tjoi2016&Heoi2016]字符串 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1215  Solved: 484[S ...

  8. BZOJ4556: [Tjoi2016&Heoi2016]字符串

    Description 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了 一个长为n的字符串s,和m个问题.佳媛姐姐必须正确回答这m个问题,才能打开 ...

  9. BZOJ4556 [Tjoi2016&Heoi2016]字符串 SA ST表 二分答案 主席树

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4556.html 题目传送门 - BZOJ4556 题意 给定一个长度为 $n$ 的字符串 $s$ . ...

  10. 2019.02.27 bzoj4556: [Tjoi2016&Heoi2016]字符串(二分答案+sam+线段树合并)

    传送门 题意:给一个字符串SSS. 有mmm次询问,每次给四个参数a,b,c,da,b,c,da,b,c,d,问s[a...b]s[a...b]s[a...b]的所有子串和s[x...y]s[x... ...

随机推荐

  1. css中的block与none

    *{ display:none; } div{ display:block; } div 会正常显示粗来吗?不会 因为*代表所有元素,包括div的父级元素html,body 父级元素都不显示了,子元素 ...

  2. 使用bootstrap-table等自动使用ajax地址载入数据的插件的数据设计建议

    提出问题: bootstrap-table 可以根据ajax地址load的json数据.这个json数据一般就是数据库中查询的结果,而数据库中存放的数据一般不是用户友好的,比如数据表示一般使用简洁id ...

  3. 实验三敏捷开发与XP实践《Java开发环境的熟悉》实验报告

    一.实验要求 1.没有Linux基础的同学建议先学习<Linux基础入门(新版)><Vim编辑器> 课程 2.完成实验.撰写实验报告,实验报告以博客方式发表在博客园,注意实验报 ...

  4. 洛谷 P3201 [HNOI2009]梦幻布丁(启发式合并)

    题面 luogu 题解 什么是启发式合并? 小的合并到大的上面 复杂度\(O(nlogn)\) 这题颜色的修改,即是两个序列的合并 考虑记录每个序列的\(size\) 小的合并到大的 存序列用链表 但 ...

  5. 动态树Link-cut tree(LCT)总结

    动态树是个好玩的东西 LCT题集 预备知识 Splay 树链剖分(好像关系并不大) 动态树(Link-cut tree) 先搬dalao博客 什么是LCT? 动态树是一类要求维护森林的连通性的题的总称 ...

  6. 2018牛客多校2 - J farm 随机乱搞/二进制分组

    题意:给定n*m的格子,每个格子有不同的种类,q次操作,每次操作使[x1,y1]到[x2,y2]的格子除了k类型的以外都删除,最后单次询问所有格子被删了几个 官方题解提到了两种有意思的做法,随机和二进 ...

  7. DOM操作 045

    一 什么是DOM DOM : 文档对象模型 它为文档提供了结构化表示 并定义了如何通过脚本来访问文档结构 . 目的就是为了能让js操作HTML元素而制定的一个规范 . DOM树(一切都是节点): 元素 ...

  8. MVC 和 MVR 的区别分析

    MVC模式中,可以将路由绑定到控制器上.MVR是一对一的.路由和控制器是一个东西. 优点是需要被迫处理路由.缺点是不能在控制器被绑定到路由之前复用控制器. [1] node.js - Differen ...

  9. Java中的AES加解密工具类:AESUtils

    本人手写已测试,大家可以参考使用 package com.mirana.frame.utils.encrypt; import com.mirana.frame.constants.SysConsta ...

  10. Dijkstra算法以及各种海量数据排序算法

    一.Dijkstra最短路径算法 是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止. 实现一 // // D ...