Description

Solution

考虑每一条边的贡献

对于树边,如果两边各存在一个点,那么有贡献,总贡献就是 \((2^{size}-1)*(2^{n-size}-1)\) 分别对应两边的 \(size\)

对于环上的边,首先最优策略是断掉空隙最大一段, \(DP\) 算贡献

具体来说就是枚举最大空隙长度,每一次转移保证每一段之间的位置之差不超过最大空隙就好了

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
const int N=405,mod=1e9+7,M=1e5+10;
inline int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}
return sum;
}
int dep[N],fa[N],sz[N],a[N],cnt=0,b[N],f[N],ans=0;
inline void solve(int n){
for(int i=1;i<=n;i++)a[i+n]=a[i];
for(int i=1;i<=n-2;i++){
for(int s=1;s<=n;s++){
f[s+i]=a[s+i];
for(int j=s+i+1;j<s+n;j++){
for(int k=1;k<=i;k++)f[j]=(f[j]+f[j-k])%mod;
if(j-i<=n)f[j]=(f[j]+f[j-i-1])%mod;
f[j]=1ll*f[j]*a[j]%mod;
}
ans=(ans+1ll*f[s+n-1]*(n-i-1))%mod;
for(int j=s+i;j<s+n;j++)f[j]=0;
}
}
int t=1;
for(int i=1;i<=n;i++)t=1ll*t*a[i]%mod;
ans=(ans+1ll*t*(n-1))%mod;
cnt=0;
}
int n,m,head[N],nxt[M],to[M],num=1;bool vis[M];
inline void link(int x,int y){nxt[++num]=head[x];to[num]=y;head[x]=num;}
inline void dfs(int x){
sz[x]=1;
for(int i=head[x],u;i;i=nxt[i]){
if(sz[u=to[i]]){
if(dep[u]>dep[x]){
int v=u,la=0;
while(v!=x){
a[++cnt]=b[sz[v]-sz[la]]-1;
vis[fa[v]]=vis[fa[v]^1]=1;v=to[fa[la=v]^1];
}
a[++cnt]=b[n-sz[la]]-1;vis[i]=vis[i^1]=1;
solve(cnt);
}
continue;
}
fa[u]=i;dep[u]=dep[x]+1;
dfs(u);sz[x]+=sz[u];
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
int x,y;
cin>>n>>m;b[0]=1;
for(int i=1;i<=n;i++)b[i]=b[i-1]*2%mod;
for(int i=1;i<=m;i++){
gi(x);gi(y);
link(x,y);link(y,x);
}
dfs(1);
for(int i=2;i<=num;i+=2)
if(!vis[i]){
x=to[i];y=to[i^1];
if(dep[x]<dep[y])swap(x,y);
ans=(ans+1ll*(b[sz[x]]-1)*(b[n-sz[x]]-1))%mod;
}
ans=1ll*ans*qm(b[n],mod-2)%mod;
printf("%d\n",ans);
return 0;
}

bzoj 5315: [Jsoi2018]防御网络的更多相关文章

  1. 【BZOJ5315】[JSOI2018]防御网络(动态规划,仙人掌)

    [BZOJ5315][JSOI2018]防御网络(动态规划,仙人掌) 题面 BZOJ 洛谷 题解 显然图是仙人掌. 题目给了斯坦纳树就肯定不是斯坦纳树了,,,, 总不可能真让你\(2^n\)枚举点集再 ...

  2. bzoj5315/luoguP4517 [JSOI2018]防御网络(仙人掌,dp)

    bzoj5315/luoguP4517 防御网络(仙人掌,dp) bzoj Luogu 题目描述略(太长了) 题解时间 本题和斯坦纳树无关. 题面保证了是一个仙人掌...? 但这个环之间甚至交点都没有 ...

  3. BZOJ5315 [JSOI2018]防御网络 【仙人掌 + dp】

    题目链接 BZOJ5315 题解 题目好吓人= =点仙人掌 + 斯坦纳树 我们只需求出对于所有选点的方案的斯坦纳树边长总和 \(n\)那么大当然不能状压,但是考虑一下如果这是一棵树,一个方案的贡献就是 ...

  4. 洛谷P4517 [JSOI2018]防御网络(dp)

    题面 传送门 题解 翻译一下题意就是每次选出一些点,要用最少的边把这些点连起来,求期望边数 我也不知道为什么反正总之就是暴力枚举太麻烦了所以我们考虑贡献 如果一条边是割边,那么它会在图里当且仅当两边的 ...

  5. LOJ 2547 「JSOI2018」防御网络——思路+环DP

    题目:https://loj.ac/problem/2547 一条树边 cr->v 会被计算 ( n-siz[v] ) * siz[v] 次.一条环边会被计算几次呢?于是去写了斯坦纳树. #in ...

  6. LOJ #2547 Luogu P4517「JSOI2018」防御网络

    好像也没那么难写 LOJ #2547 Luogu P4517 题意 在一棵点仙人掌中等概率选择一个点集 求选出点集的斯坦纳树大小的期望 定义点仙人掌为不存在一个点在多个简单环中的连通图 斯坦纳树为在原 ...

  7. 【LOJ】 #2547. 「JSOI2018」防御网络

    题解 如果只是一棵树的话,那么就枚举每条边,分成两部分大小为\(a\)和\(b\) 那么这条边被统计的方案数是\((2^a - 1)(2^b - 1)\) 如果是一个环的话,我们枚举环上至少有\(N ...

  8. bzoj 1834: [ZJOI2010]network 网络扩容

    #include<cstdio> #include<iostream> #include<cstring> #define M 100000 #define inf ...

  9. bzoj 1834 [ZJOI2010]network 网络扩容(MCMF)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1834 [题意] 给定一个有向图,每条边有容量C,扩容费用W,问最大流和使容量增加K的最 ...

随机推荐

  1. webservice 创建及调用

    1.创建一个空白项目 2.在此项目上新建项--添加一个web服务 (.asmx) 这样就创建好了一个webservice --------------------------------------- ...

  2. Visual Studio下使用NUnit进行测试驱动开发

    在Visual Studio 2015中集成的MSTest可以用于单元测试. 在项目中,选中需要测试的方法,点击鼠标右键,选择弹出菜单中的[创建单元测试],按照默认设置,即可自动新建一个测试项目. 需 ...

  3. NGrinder操作指南

    一.使用nGrinder谷歌插件录制性能测试脚本: 1.下载录制插件压缩包ngrinder-recorder-1.0.7z,解压到本地目录. 2.打开Chrome浏览器,URL框内输入chrome:/ ...

  4. leetcode 55. 跳跃游戏 JAVA

    题目: 给定一个非负整数数组,你最初位于数组的第一个位置. 数组中的每个元素代表你在该位置可以跳跃的最大长度. 判断你是否能够到达最后一个位置. 示例 1: 输入: [2,3,1,1,4] 输出: t ...

  5. 51nod-迷宫问题(Dijkstra算法)

    关于Dijkstra算法的博文 http://www.cnblogs.com/skywang12345/p/3711512.html#anchor2 Dijkstra算法是一个经典的算法——他是荷兰计 ...

  6. CGLIB动态代理模式

    概念: 第三方技术CGLIB动态代理和JDK代理不同的是,JDK代理需要提供接口,而CGLIB代理不需要: 它只需要一个非抽象类就能实现动态代理 例子: /** * 非抽象类 * @author Ad ...

  7. appium +android例子

    配置文件: # coding:utf-8 __author__ = 'Helen' """ description:配置全局参数 """ i ...

  8. 高阶篇:4.2.2)DFMEA层级分明的失效模式、失效后果、失效原因

    本章目的:明确失效模式.失效后果.失效原因的定义,分清楚层次关系,完成DFMEA这部分的填写. 1.失效模式,失效后果,失效原因的定义: 这是FEMEA手册第四册中的定义. 1.1 潜在失效模式 (b ...

  9. [短期持续更新]Codeforces 构造题一览

    说实话我觉得做这种题很没意思(不够硬核), 可是人有短板终究是要补的...起码这种类型补起来相对简单 所以还是把先前准备好的专题放下吧,做点实现上比较休闲的题 ps.为了精简篇幅,代码全部丢到ubun ...

  10. (二)Audio子系统之new AudioRecord()(Android4.4)

    在上一篇文章<(一)Audio子系统之AudioRecord.getMinBufferSize>中已经介绍了AudioRecord如何获取最小缓冲区大小,接下来,继续分析AudioReco ...