经典动态二分图问题。

考虑solve(l,r)分治成l,mid和mid+1,r。先将区间[mid+1,r]中的点全部加入图中,若此时存在奇环则ans[l..mid]全部为0,否则递归到左边。

递归完左边后将右边的点全部删去,左边点全部加入,按同样的方法处理右边。

判断奇环使用可撤销带权并查集,注意多组数据不要用memset。

 #include<cstdio>
#include<algorithm>
#include<cstring>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
int T,n,m,top,cnt,u,v;
int fa[N],sz[N],d[N],ans[N],h[N],nxt[N],to[N];
struct P{ int a,b,c; }s[*N];
struct S{ int x,y; };
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void init(){ cnt=; rep(i,,n) fa[i]=i,sz[i]=,d[i]=,h[i]=; } S get(int x){
if (fa[x]==x) return (S){x,};
S t=get(fa[x]); return (S){t.x,t.y^d[x]};
} void uni(int x,int y){
int t1=get(x).y; x=get(x).x;
int t2=get(y).y; y=get(y).x;
if (sz[x]<sz[y]) swap(x,y);
s[++top]=(P){,y,y}; s[++top]=(P){,x,sz[x]}; s[++top]=(P){,y,};
fa[y]=x; d[y]=t1^t2^; sz[x]+=sz[y];
} void cancel(int x){
if (s[x].a==) fa[s[x].b]=s[x].c;
if (s[x].a==) sz[s[x].b]=s[x].c;
if (s[x].a==) d[s[x].b]=s[x].c;
} void solve(int l,int r){
if (l==r) { ans[l]=; return; }
int mid=(l+r)>>,tmp=top; bool flag=;
rep(u,mid+,r)
for (int i=h[u]; i; i=nxt[i]){
int v=to[i];
if (v>=l && v<=mid) continue;
if (get(u).x!=get(v).x) uni(u,v);
else if (get(u).y==get(v).y) { flag=; break; }
}
if (flag) rep(i,l,mid) ans[i]=; else solve(l,mid);
while (top>tmp) cancel(top--); flag=;
rep(u,l,mid)
for (int i=h[u]; i; i=nxt[i]){
int v=to[i];
if (v>mid && v<=r) continue;
if (get(u).x!=get(v).x) uni(u,v);
else if (get(u).y==get(v).y) { flag=; break; }
}
if (flag) rep(i,mid+,r) ans[i]=; else solve(mid+,r);
while (top>tmp) cancel(top--);
} int main(){
freopen("hdu5354.in","r",stdin);
freopen("hdu5354.out","w",stdout);
for (scanf("%d",&T); T--; ){
scanf("%d%d",&n,&m); init();
rep(i,,m) scanf("%d%d",&u,&v),add(u,v),add(v,u);
solve(,n);
rep(i,,n) printf("%d",ans[i]); puts("");
}
return ;
}

[HDU5354]Bipartite Graph(CDQ分治+并查集)的更多相关文章

  1. 2015多校第6场 HDU 5354 Bipartite Graph CDQ,并查集

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5354 题意:求删去每个点后图是否存在奇环(n,m<=1e5) 解法:很经典的套路,和这题一样:h ...

  2. hdu_5354_Bipartite Graph(cdq分治+并查集判二分图)

    题目链接:hdu_5354_Bipartite Graph 题意: 给你一个由无向边连接的图,问对于每一个点来说,如果删除这个点,剩下的点能不能构成一个二分图. 题解: 如果每次排除一个点然后去DFS ...

  3. 【openjudge】C15C Rabbit's Festival CDQ分治+并查集

    题目链接:http://poj.openjudge.cn/practice/C15C/ 题意:n 点 m 边 k 天.每条边在某一天会消失(仅仅那一天消失).问每一天有多少对点可以相互到达. 解法:开 ...

  4. BZOJ 4025: 二分图 [线段树CDQ分治 并查集]

    4025: 二分图 题意:加入边,删除边,查询当前图是否为二分图 本来想练lct,然后发现了线段树分治的做法,感觉好厉害. lct做法的核心就是维护删除时间的最大生成树 首先口胡一个分块做法,和hno ...

  5. 2018.10.01 bzoj3237: [Ahoi2013]连通图(cdq分治+并查集)

    传送门 cdq分治好题. 对于一条边,如果加上它刚好连通的话,那么删掉它会有两个大集合A,B.于是我们先将B中禁用的边连上,把A中禁用的边禁用,再递归处理A:然后把A中禁用的边连上,把B中禁用的边禁用 ...

  6. 【CF603E】Pastoral Oddities cdq分治+并查集

    [CF603E]Pastoral Oddities 题意:有n个点,依次加入m条边权为$l_i$的无向边,每次加入后询问:当前图是否存在一个生成子图,满足所有点的度数都是奇数.如果有,输出这个生成子图 ...

  7. 2018.09.30 bzoj4025: 二分图(线段树分治+并查集)

    传送门 线段树分治好题. 这道题实际上有很多不同的做法: cdq分治. lct. - 而我学习了dzyo的线段树分治+并查集写法. 所谓线段树分治就是先把操作分成lognlognlogn个连续不相交的 ...

  8. hdu5354 Bipartite Graph

    分治+并查集.假设要求[L,mid]的答案,那么很明显,如果一条边的两个端点都>mid的话或者一个端点>mid一个端点<L,说明询问[L,mid]这个区间中任何一点时候,这一条边都是 ...

  9. 【CF576E】Painting Edges 线段树按时间分治+并查集

    [CF576E]Painting Edges 题意:给你一张n个点,m条边的无向图,每条边是k种颜色中的一种,满足所有颜色相同的边内部形成一个二分图.有q个询问,每次询问给出a,b代表将编号为a的边染 ...

随机推荐

  1. POJ 2456 Aggressive cows ( 二分搜索)

    题目链接 Description Farmer John has built a new long barn, with N (2 <= N <= 100,000) stalls. The ...

  2. Vue组件-动态组件

    动态组件 通过使用保留的 <component> 元素,动态地绑定到它的 is 特性,可以让多个组件使用同一个挂载点,并动态切换: <div id="app6"& ...

  3. python基础===字符串的制表,换行基础操作

    \n\t 制表符和换行符 >>> print("Languages:\n\tPython\n\tC\n\tJavaScript") Languages: Pyth ...

  4. python windows下安装celery调度任务时出错

    由于celery 4.0不支持windows系统.所以用命令pip install Celery安装的celery是最新版4.0的不能在windows下运行. 在windows命令窗口运行: cele ...

  5. js获取jsp上下文地址

    参考自博客:http://blog.csdn.net/lanchengxiaoxiao/article/details/7445498

  6. ExecutorService 用例

    import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Tes ...

  7. 《java并发编程实战》读书笔记12--原子变量,非阻塞算法,CAS

    第15章 原子变量与非阻塞同步机制 近年来,在并发算法领域的大多数研究都侧重于非阻塞算法,这种算法用底层的原子机器指令(例如比较并交换指令)代替锁老确保数据在并发访问中的一致性. 15.1 锁的劣势 ...

  8. 一:Storm集群环境搭建

    第一:storm集群环境准备及部署[1]硬件环境准备--->机器数量>=3--->网卡>=1--->内存:尽可能大--->硬盘:无额外需求[2]软件环境准备---& ...

  9. AC日记——方差 洛谷 P1471

    方差 思路: 线段树: 代码: #include <bits/stdc++.h> using namespace std; #define maxn 100005 struct TreeN ...

  10. Razor 部分页面

    最近在和师父一起打野,后台要求挺多的.后台还是用的EF和MVC5,页面使用的razor. 现在是发现好多的页面有太多重复的东西了. 比如说查询页面的字段,比如说列表页,比如说详情方法都有. 灵机一动, ...