[poj2528]Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 66154   Accepted: 19104

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

 
题目大意:T组测试数据,每组测试数据有N张海报,按次序贴在板子上,我们可以将其抽象为一条直线,每张海报占据的区域[L,R],问最后可以贴几张海报。
试题分析:标记每个区间是否只有一种颜色,如果是的话访问这个区间时看它的颜色编号有没有被算进答案。更新时注意下传标记。
       POJ上的数据比较水,建议去试一试discuss中的数据,蛮良心的找出普通离散化的错误……
       比如说
1
3
1 3
6 10
1 10 //正确输出:3
//错误输出:2
//问题原因:离散化成了[1,2] [3,4] [1,4],这样确实只剩下2了

      如何解决?在两两之差>1时(区域不会被完全覆盖),就可以在这里插入一个节点以标记这里有一个区间要算。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=200001;
const int INF=999999;
int N,M;
int T;
int A[MAXN*2],a[MAXN*2],b[MAXN*2];
int tr[MAXN*8+100];
int cnt,tmp3;
bool flag[MAXN*8+100];
bool Hash[MAXN*8+100];
int tmp; void tage_lazy(int rt,int l,int r){
if(flag[rt]){
flag[rt*2]=flag[rt*2+1]=true;
tr[rt*2]=tr[rt*2+1]=tr[rt];
flag[rt]=false;
}
return ;
}
void add(int l,int r,int rt,int L,int R){
if(L<=l&&R>=r){
tr[rt]=cnt;
flag[rt]=true;
return ;
}
tage_lazy(rt,l,r);
int mid=(l+r)>>1;
if(mid<R) add(mid+1,r,rt*2+1,L,R);
if(mid>=L) add(l,mid,rt*2,L,R);
return ;
}
int Que(int l,int r,int rt,int L,int R){
if(flag[rt]){
if(!Hash[tr[rt]]){
Hash[tr[rt]]=true;
return 1;
}
else return 0;
}
if(l==r) return 0;
int mid=(l+r)>>1;
return Que(l,mid,rt*2,L,R)+Que(mid+1,r,rt*2+1,L,R);
} int main(){
T=read();
while(T--){
memset(tr,0,sizeof(tr));
memset(flag,false,sizeof(flag));
memset(Hash,false,sizeof(Hash));
N=read();tmp=tmp3=0;
for(int i=1;i<=N;i++){
++tmp;A[tmp]=a[tmp]=read();
++tmp;A[tmp]=a[tmp]=read();
}
sort(a+1,a+tmp+1);
int tmp2=0;int treef=tmp;
for(int i=1;i<=tmp;i++)
if(a[i]==a[i-1]) treef--;
else b[++tmp3]=a[i];
int k=tmp3;
for(int i=1;i<=k;i++)
if(b[i]>b[i-1]+1) b[++tmp3]=b[i-1]+1;
sort(b+1,b+tmp3+1);
treef=tmp3;
for(int i=1;i<=N;i++){
++cnt;
int l=lower_bound(b+1,b+tmp3+1,A[tmp2+1])-b;
int r=lower_bound(b+1,b+tmp3+1,A[tmp2+2])-b;
add(1,treef,1,l,r);
tmp2+=2;
}
printf("%d\n",Que(1,treef,1,1,treef));
}
}

【线段树】Mayor's posters的更多相关文章

  1. 线段树 Mayor's posters

    甚至DFS也能过吧 Mayor's posters POJ - 2528 The citizens of Bytetown, AB, could not stand that the candidat ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  4. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  5. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  6. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  7. Mayor's posters(离散化线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 54067   Accepted: 15713 ...

  8. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  10. Mayor's posters POJ - 2528(线段树 + 离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74745   Accepted: 21574 ...

随机推荐

  1. Java多线程学习(二)synchronized关键字(1)

    转载请备注地址: https://blog.csdn.net/qq_34337272/article/details/79655194 Java多线程学习(二)将分为两篇文章介绍synchronize ...

  2. Django【设计】可插拔的插件方式实现

    需求: 在CMDB系统中,我们需要对资产进行采集和资产入库,包括serverBasic.disk.memory.nic信息等,客户端需要采集这些硬件的信息,服务端则负责资产入库,但是需要采集的硬件并不 ...

  3. linux编程之多线程编程

    我们知道,进程在各自独立的地址空间中运行,进程之间共享数据需要用mmap或者进程间通信机制,有些情况需要在一个进程中同时执行多个控制流程,这时候线程就派上了用场,比如实现一个图形界面的下载软件,一方面 ...

  4. linux pthread【转】

    转自:http://www.cnblogs.com/alanhu/articles/4748943.html Posix线程编程指南(1) 内容:  一. 线程创建  二.线程取消 关于作者  线程创 ...

  5. 測試 battery capacity curve 的負載

    昨天有同事問說, 他要測試 battery capacity curve, 並且負載要使用 33mA, 於是我想到有一個 apk 名稱為 快速放電 (最下方),可以控制 cpu 的 load, 他試了 ...

  6. Open Compute Project

    Open Compute Project https://github.com/opencomputeproject https://github.com/floodlight/floodlight ...

  7. 很重要的处理项目url[www]

    http://www.xdowns.com/soft/10/57/2013/Soft_113319.html https://github.com/TricksterGuy/Morphan http: ...

  8. WoW[www]

    WoWBeez https://github.com/StealtheeEU/WoWBeez https://github.com/mtucker6784/Elysium https://github ...

  9. openfire在内网的情况下 文件传输代理的设置

    openfire在内网的情况下 文件传输代理的设置 http://blog.csdn.net/v6543210/article/details/22506565

  10. caffe Python API 之卷积层(Convolution)

    1.Convolution层: 就是卷积层,是卷积神经网络(CNN)的核心层. 层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配 ...