[poj2528]Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 66154   Accepted: 19104

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections. 
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall. 

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

Source

 
题目大意:T组测试数据,每组测试数据有N张海报,按次序贴在板子上,我们可以将其抽象为一条直线,每张海报占据的区域[L,R],问最后可以贴几张海报。
试题分析:标记每个区间是否只有一种颜色,如果是的话访问这个区间时看它的颜色编号有没有被算进答案。更新时注意下传标记。
       POJ上的数据比较水,建议去试一试discuss中的数据,蛮良心的找出普通离散化的错误……
       比如说
1
3
1 3
6 10
1 10 //正确输出:3
//错误输出:2
//问题原因:离散化成了[1,2] [3,4] [1,4],这样确实只剩下2了

      如何解决?在两两之差>1时(区域不会被完全覆盖),就可以在这里插入一个节点以标记这里有一个区间要算。

代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=200001;
const int INF=999999;
int N,M;
int T;
int A[MAXN*2],a[MAXN*2],b[MAXN*2];
int tr[MAXN*8+100];
int cnt,tmp3;
bool flag[MAXN*8+100];
bool Hash[MAXN*8+100];
int tmp; void tage_lazy(int rt,int l,int r){
if(flag[rt]){
flag[rt*2]=flag[rt*2+1]=true;
tr[rt*2]=tr[rt*2+1]=tr[rt];
flag[rt]=false;
}
return ;
}
void add(int l,int r,int rt,int L,int R){
if(L<=l&&R>=r){
tr[rt]=cnt;
flag[rt]=true;
return ;
}
tage_lazy(rt,l,r);
int mid=(l+r)>>1;
if(mid<R) add(mid+1,r,rt*2+1,L,R);
if(mid>=L) add(l,mid,rt*2,L,R);
return ;
}
int Que(int l,int r,int rt,int L,int R){
if(flag[rt]){
if(!Hash[tr[rt]]){
Hash[tr[rt]]=true;
return 1;
}
else return 0;
}
if(l==r) return 0;
int mid=(l+r)>>1;
return Que(l,mid,rt*2,L,R)+Que(mid+1,r,rt*2+1,L,R);
} int main(){
T=read();
while(T--){
memset(tr,0,sizeof(tr));
memset(flag,false,sizeof(flag));
memset(Hash,false,sizeof(Hash));
N=read();tmp=tmp3=0;
for(int i=1;i<=N;i++){
++tmp;A[tmp]=a[tmp]=read();
++tmp;A[tmp]=a[tmp]=read();
}
sort(a+1,a+tmp+1);
int tmp2=0;int treef=tmp;
for(int i=1;i<=tmp;i++)
if(a[i]==a[i-1]) treef--;
else b[++tmp3]=a[i];
int k=tmp3;
for(int i=1;i<=k;i++)
if(b[i]>b[i-1]+1) b[++tmp3]=b[i-1]+1;
sort(b+1,b+tmp3+1);
treef=tmp3;
for(int i=1;i<=N;i++){
++cnt;
int l=lower_bound(b+1,b+tmp3+1,A[tmp2+1])-b;
int r=lower_bound(b+1,b+tmp3+1,A[tmp2+2])-b;
add(1,treef,1,l,r);
tmp2+=2;
}
printf("%d\n",Que(1,treef,1,1,treef));
}
}

【线段树】Mayor's posters的更多相关文章

  1. 线段树 Mayor's posters

    甚至DFS也能过吧 Mayor's posters POJ - 2528 The citizens of Bytetown, AB, could not stand that the candidat ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  4. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  5. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  6. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  7. Mayor's posters(离散化线段树)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 54067   Accepted: 15713 ...

  8. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

  10. Mayor's posters POJ - 2528(线段树 + 离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 74745   Accepted: 21574 ...

随机推荐

  1. Ribbon的主要组件与工作流程

    一:Ribbon是什么? Ribbon是Netflix发布的开源项目,主要功能是提供客户端的软件负载均衡算法,将Netflix的中间层服务连接在一起.Ribbon客户端组件提供一系列完善的配置项如连接 ...

  2. Mimikatz.ps1本地执行

    PS C:\Users\hacker> Get-ExecutionPolicy Restricted PS C:\Users\hacker> Set-ExecutionPolicy Unr ...

  3. python中multiprocessing模块

    multiprocess模块那来干嘛的? 答:利用multiprocessing可以在主进程中创建子进程.Threading是多线程,multiprocessing是多进程. #该模块和Threadi ...

  4. Python参数输入模块-optparse

    废话: 模块名是optparse, 很多人打成optparser.以至于我一直导入导入不了.搞的不知所以. 模块的使用: import optparse #usage 定义的是使用方法,%prog 表 ...

  5. 【目录】Python自动化运维

    目录:Python自动化运维笔记 Python自动化运维 - day2 - 数据类型 Python自动化运维 - day3 - 函数part1 Python自动化运维 - day4 - 函数Part2 ...

  6. peewee外键性能问题

    # 转载自:https://www.cnblogs.com/miaojiyao/articles/5217757.html 下面讨论一下用peewee的些许提高性能的方法. 避免N+1查询 N+1查询 ...

  7. centos 快捷键

    centos 快捷键大全 时间:2013-02-23 14:54来源:blog.csdn.net 举报 点击:225次 新手通常会不太习惯GNOME或KDE的界面操作,不过还好,LINUX的快捷键大多 ...

  8. python设计模式之单例模式(二)

    上次我们简单了解了一下什么是单例模式,今天我们继续探究.上次的内容点这 python设计模式之单例模式(一) 上次们讨论的是GoF的单例设计模式,该模式是指:一个类有且只有一个对象.通常我们需要的是让 ...

  9. redis之(十四)redis的主从复制的原理

    一:redis主从复制的原理,步骤.   第一步:复制初始化 --->从redis启动后,会根据配置,向主redis发送SYNC命令.2.8版本以后,发送PSYNC命令. --->主red ...

  10. Integer to Roman——相当于查表法

    Given an integer, convert it to a roman numeral. Input is guaranteed to be within the range from 1 t ...