【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集
【BZOJ1576】[Usaco2009 Jan]安全路经Travel
Description
.jpg)
Input
* 第一行: 两个空格分开的数, N和M
* 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i
Output
* 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛路的最少的时间.如果这样的路经不存在,输出-1.
Sample Input
1 2 2
1 3 2
3 4 4
3 2 1
2 4 3
输入解释:
跟题中例子相同
Sample Output
3
6
输出解释:
跟题中例子相同
题解: 先求出最短路径树,然后我们统计每条非树边对每个点的影响。一条非树边可以更新它覆盖的所有点,如果这条边(x,y,len)覆盖了z,那么ans[z]=min(ans[z],dis[x]+dis[y]+len-dis[z]),因为dis[z]是确定的,所以我们维护链上的dis[x]+dis[y]+len的最小值即可。
如何维护?树剖+线段树,倍增,都是不错的方案,当然有更巧的。将所有非树边按dis[x]+dis[y]+len从小到大排序,然后用并查集维护所有没被更新的点,暴力更新路径上没被更新的点即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <utility>
#define mp(A,B) make_pair(A,B)
using namespace std;
const int maxn=100010;
int n,m,cnt;
int to[maxn<<2],next[maxn<<2],val[maxn<<2],head[maxn],dis[maxn],fa[maxn],pre[maxn];
int f[maxn],s[maxn],ans[maxn];
bool vis[maxn];
priority_queue<pair<int,int> > q;
struct edge
{
int a,b,v;
bool ont;
}p[maxn<<1];
inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int rd()
{
int ret=0,f=1; char gc=nc();
while(!isdigit(gc)) {if(gc=='-') f=-f; gc=nc();}
while(isdigit(gc)) ret=ret*10+gc-'0',gc=nc();
return ret*f;
}
inline void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
}
bool cmp(const edge &a,const edge &b)
{
return a.v<b.v;
}
int find(int x)
{
return (f[x]==x)?x:(f[x]=find(f[x]));
}
int main()
{
n=rd(),m=rd();
memset(head,-1,sizeof(head));
register int i,u,a,b;
for(i=1;i<=m;i++) p[i].a=rd(),p[i].b=rd(),p[i].v=rd(),add(p[i].a,p[i].b,p[i].v),add(p[i].b,p[i].a,p[i].v);
memset(dis,0x3f,sizeof(dis));
dis[1]=0,q.push(mp(0,1));
while(!q.empty())
{
u=q.top().second,q.pop();
if(vis[u]) continue;
vis[u]=1;
for(i=head[u];i!=-1;i=next[i]) if(dis[to[i]]>dis[u]+val[i])
fa[to[i]]=u,pre[to[i]]=(i>>1)+1,dis[to[i]]=dis[u]+val[i],q.push(mp(-dis[to[i]],to[i]));
}
for(i=1;i<=n;i++) f[i]=i,p[pre[i]].ont=1;
for(i=1;i<=m;i++) p[i].v+=dis[p[i].a]+dis[p[i].b];
sort(p+1,p+m+1,cmp);
for(i=1;i<=m;i++) if(!p[i].ont)
{
a=find(p[i].a),b=find(p[i].b);
while(a!=b)
{
if(dis[a]<dis[b]) swap(a,b);
ans[a]=p[i].v-dis[a],f[a]=fa[a],a=find(f[a]);
}
}
for(i=2;i<=n;i++) printf("%d\n",(!ans[i])?-1:ans[i]);
return 0;
}
【BZOJ1576】[Usaco2009 Jan]安全路经Travel 最短路+并查集的更多相关文章
- BZOJ1576: [Usaco2009 Jan]安全路经Travel(最短路 并查集)
题意 给你一张无向图,保证从1号点到每个点的最短路唯一.对于每个点求出删掉号点到它的最短路上的最后一条边(就是这条路径上与他自己相连的那条边)后1号点到它的最短路的长度 Sol emmm,考场上想了个 ...
- BZOJ.1576.[Usaco2009 Jan]安全路经Travel(树形DP 并查集)
题目链接 BZOJ 洛谷 先求最短路树.考虑每一条非树边(u,v,len),设w=LCA(u,v),这条边会对w->v上的点x(x!=w)有dis[u]+dis[v]-dis[x]+len的距离 ...
- 【思维题 并查集 图论】bzoj1576: [Usaco2009 Jan]安全路经Travel
有趣的思考题 Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第 ...
- BZOJ1576 [Usaco2009 Jan]安全路经Travel
首先用Dijkstra做出最短路生成树,设dis[p]为1到p点的最短路长度 对于一条不在生成树上的边u -> v,不妨设fa为u.v的lca 则一fa到v的路径上的任意点x都可以由u达到,走的 ...
- BZOJ1576: [Usaco2009 Jan]安全路经Travel(树链剖分)
Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...
- [BZOJ1576] [Usaco2009 Jan]安全路经Travel(堆优化dijk + (并查集 || 树剖))
传送门 蒟蒻我原本还想着跑两边spfa,发现不行,就gg了. 首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径 因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短 ...
- bzoj 1576: [Usaco2009 Jan]安全路经Travel 树链剖分
1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec Memory Limit: 64 MB Submit: 665 Solved: 227[Sub ...
- bzoj 1576: [Usaco2009 Jan]安全路经Travel——并查集+dijkstra
Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数 ...
- BZOJ 1576: [Usaco2009 Jan]安全路经Travel
日常自闭半小时后看题解,太弱了qwq. 感觉这道题还是比较难的,解法十分巧妙,不容易想到. 首先题目说了起点到每个点的最短路都是唯一的,那么对这个图求最短路图必定是一棵树,而且这棵树是唯一的. 那么我 ...
随机推荐
- Linux 定时任务命令Crontab参数详解
http://xshell.net/linux/crontab.html 实战: * */1 * * * /usr/local/etc/rc.d/lighttpd restart 每一小时重启 ...
- centos7 crontab 定时执行python任务不执行的原因及解决办法
1.问题描述 在用crontab设置定时任务时,发现py脚本在crontab中报错,显示import某些包找不到,但是手动直接运行py脚本,完全正常. 01 05 * * * ./get_topi ...
- 转: Tsung:开源多协议分布式负载&压力测试工具
Main features High Performance: the load can be distributed on a cluster of client machines Multi-pr ...
- AsyncHttpClient来完成网页源代码的显示功能,json数据在服务器端的读取还有安卓上的读取
一.使用AsyncHttpClient来完成网页源代码的显示功能: 首先.我们引入 步骤: 1.添加网络权限 2.判断网页地址是否为空 3.不为空的情况下创建客户端对象 4.处理get/post请求 ...
- github 搜索技巧
1.关键词 + 指定开发语言 bitcoin language:javascript 2.关键词 + stars 数量 + forks 数量 bitcoin stars:> forks:>
- clone和lambda的一个小问题和解决
起因是这样,某管理器类有两个集合,A集合是模板集合,B集合是从模板中实例出的集合. 但是B集合的一些东西,总会调用A集合中的,导致出错. 一开始考虑clone使用不当,但检查后没发现什么问题,后来发现 ...
- Itunes connect上传应用视频 app preview时遇到“无法载入文件”的问题
总结一下,上传视频的一个经验吧,在使用safari进行上传的时候,有时出现了问题,上传失败,但是提示语只有一句“无法载入文件,请再次尝试”.这样的提示并不能提供更多的信息,为什么视频无法上传.有这样的 ...
- 使用 xlue 实现 tips
经常遇到如下的需求 鼠标hover到目标对象一定时间后,弹出tips或者窗口; 鼠标离开目标对象一定时间后,隐藏tips或者窗口; 鼠标从目标对象移动到弹出的窗口上,这种状况下不隐藏窗口; 考虑到这种 ...
- 简单说一下 servlet的生命周期?
1.servlet有良好的生存期的定义,包括加载和实例化.初始化.处理请求以及服务结束.这个生存期由 javax.servlet.Servlet接口的 init,service和 destroy ...
- 谈一谈APP版本号问题
如题:谈一谈APP版本号问题 为什么要谈这个问题,周五晚上11~12点,被微信点名,说APP有错,无效的版本号,商城无法下单.我正在准备收拾东西,周末回老家,结果看到这样问题,菊花一紧.我擦,我刚加的 ...