摘自:https://blog.csdn.net/qq_35644234/article/details/60578189

《图论算法》

1、拓扑排序的介绍

对一个有向无环图(Directed Acyclic Graph简称DAG)G进行拓扑排序,是将G中所有顶点排成一个线性序列,使得图中任意一对顶点u和v,若边(u,v)∈E(G),则u在线性序列中出现在v之前。
拓扑排序对应施工的流程图具有特别重要的作用,它可以决定哪些子工程必须要先执行,哪些子工程要在某些工程执行后才可以执行。为了形象地反映出整个工程中各个子工程(活动)之间的先后关系,可用一个有向图来表示,图中的顶点代表活动(子工程),图中的有向边代表活动的先后关系,即有向边的起点的活动是终点活动的前序活动,只有当起点活动完成之后,其终点活动才能进行。

通常,我们把这种顶点表示活动、边表示活动间先后关系的有向图称做顶点活动网(Activity On Vertex network),简称AOV网。

在AOV网络中,如果存在有向边<u,v>则活动u必须在活动v之前进行,则称u是v的直接前驱(Immediate Predecessor),v是u的直接后继(Immediate Successor)。如果存在<u,u1,u2,u3,u4,u5...un,v>则称u是v的前驱,v是u的后继

这种前驱和后继具有传递性,例如v2是v1的前驱,v3是v2的前驱,同样v3也是v1的前驱。另外这种活动不能将自己作为自己的前驱或者后继,这种特性是反自反性质。

一个AOV网应该是一个有向无环图,即不应该带有回路,因为若带有回路,则回路上的所有活动都无法进行(对于数据流来说就是死循环)。在AOV网中,若不存在回路,则所有活动可排列成一个线性序列,使得每个活动的所有前驱活动都排在该活动的前面,我们把此序列叫做拓扑序列(Topological order),由AOV网构造拓扑序列的过程叫做拓扑排序(Topological sort)。AOV网的拓扑序列不是唯一的,满足上述定义的任一线性序列都称作它的拓扑序列。

2、拓扑排序的实现步骤

在有向图中选一个没有前驱的顶点并且输出
    从图中删除该顶点和所有以它为尾的弧(白话就是:删除所有和它有关的边)
    重复上述两步,直至所有顶点输出,或者当前图中不存在无前驱的顶点为止,后者代表我们的有向图是有环的,因此,也可以通过拓扑排序来判断一个图是否有环。

3、拓扑排序示例手动实现

如果我们有如下的一个有向无环图,我们需要对这个图的顶点进行拓扑排序,过程如下:

首先,我们发现V6和v1是没有前驱的,所以我们就随机选去一个输出,我们先输出V6,删除和V6有关的边,得到如下图结果:

然后,我们继续寻找没有前驱的顶点,发现V1没有前驱,所以输出V1,删除和V1有关的边,得到下图的结果: 

然后,我们又发现V4和V3都是没有前驱的,那么我们就随机选取一个顶点输出(具体看你实现的算法和图存储结构),我们输出V4,得到如下图结果: 

然后,我们输出没有前驱的顶点V3,得到如下结果: 

然后,我们分别输出V5和V2,最后全部顶点输出完成,该图的一个拓扑序列为:

v6–>v1—->v4—>v3—>v5—>v2

通过邻接矩阵来实现的代码:

 #include<cstdio>
#include<cstring>
int ans[][];///邻接矩阵,记录二者是否有关联
int n,indegree[];///记录节点个数
int queue[];///保存拓扑
void topsort()
{
int i,j,top,k=;
for(j=; j<n; ++j)///遍历n次
{
for(i=; i<=n; ++i)
{
if(indegree[i]==)///找到入度为0的节点
{
top=i;
break;
}
}
queue[k++]=top;///当前第一名入队列,也可以直接输出
indegree[top]=-;///该节点的入度更新为-1,避免重复入队列
for(i=; i<=n; ++i)
{
if(ans[top][i])///删除与该店关联的边
indegree[i]--;
}
}
for(i=; i<k-; ++i)
printf("%d ",queue[i]);
printf("%d\n",queue[n-]);
} int main()
{
int i,a,b,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(indegree,,sizeof(indegree));///数组初始化为0
memset(ans,,sizeof(ans));///数组初始化为0
for(i=; i<m; ++i)
{
scanf("%d%d",&a,&b);
if(ans[a][b]==)
{
ans[a][b]=;///二者有关联
indegree[b]++;///记录前驱数量
}
}
topsort();
}
return ;
}

拓扑排序(Toposort)的更多相关文章

  1. 拓扑排序 POJ2367Genealogical tree[topo-sort]

    ---恢复内容开始--- Genealogical tree Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4875   A ...

  2. Toposort(拓扑排序)dfs递归模板

    最近刷了几题拓扑排序的题,记录一下拓扑排序 在有向图中,并且按照一定的规则(题目所给的规则)排序.如果图中出现了有向环的话就无法排序了. int gap[maxn][maxn];//记录下有向边 in ...

  3. hdu 1811Rank of Tetris (并查集 + 拓扑排序)

    /* 题意:这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B ...

  4. 【BZOJ-1565】植物大战僵尸 拓扑排序 + 最小割

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1972  Solved: 917[Submit][Statu ...

  5. ACM: hdu 2647 Reward -拓扑排序

    hdu 2647 Reward Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Des ...

  6. ACM: hdu 1811 Rank of Tetris - 拓扑排序-并查集-离线

    hdu 1811 Rank of Tetris Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  7. ACM: poj 1094 Sorting It All Out - 拓扑排序

    poj 1094 Sorting It All Out Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & ...

  8. ACM: hihicoder #1174 : 拓扑排序·一 STL- queue

    #1174 : 拓扑排序·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 由于今天上课的老师讲的特别无聊,小Hi和小Ho偷偷地聊了起来. 小Ho:小Hi,你这学期有选 ...

  9. Going from u to v or from v to u?_POJ2762强连通+并查集缩点+拓扑排序

         Going from u to v or from v to u? Time Limit: 2000MS   Memory Limit: 65536K       Description I ...

随机推荐

  1. 日期格式操作,在oracle和mysql中的实现

    oracle add_months(日期格式值 , 整数n)  当整数n=12时,代表一年,向后推迟一年,若n=-12代表回退一年 如 to_char(add_months(to_date('2018 ...

  2. linux系统基础之---RAID(基于centos7.4 1708)

  3. Spring Cloud 微服务入门(一)--初识分布式及其发展历程

    分布式开发出现背景 当有计算机出现一段时间之后就开始有人去想如何将不同的电脑进行网络连接,而网络连接之后对于web的项目开发就探索所谓的分布式设计,同时人们也意识到重要的数据必须多份存在.所以分布式就 ...

  4. PHP环境配置:Windows7+IIS7+PHP+MySQL - 适用于(2008 R2 / 8 / 10)

    配置需求 操作系统:Windows7(x32/x64), windows2008 IIS版本:7.0 PHP版本:7.0.6 及以上 MySQL版本:5.7.12 及以上 第一步:安装 IIS 注意: ...

  5. vue调用豆瓣API加载图片403问题

    "豆瓣API是有请求次数限制的”,这会引发图片在加载的时候出现403问题,视图表现为“图片加载不出来”,控制台表现为报错403. 其实是豆瓣限制了图片的加载,我自己用了一个办法把图片缓存下来 ...

  6. Mysql慢查询开启和查看 ,存储过程批量插入1000万条记录进行慢查询测试

    首先登陆进入Mysql命令行  执行sql      show variables like 'slow_query%';  结果为OFF 说明还未开启慢查询 执行sql     show varia ...

  7. mysql 几种搜索引擎的比较

    mysql中常见的数据库引擎之间的比较  转载自 深入浅出mysql数据库 MySQL5.5以后默认使用InnoDB存储引擎,其中InnoDB和BDB提供事务安全表,其它存储引擎都是非事务安全表. 若 ...

  8. EFI分区删除的有效方法

    用Diskpart命令,可以方便的删除EFI系统分区. 一,win + R, 输入cmd,回车. 二,输入 Diskpart ,回车,得到 三,再输入 list disk , 回车,查看磁盘信息 四, ...

  9. CAT 安装运行配置教程

    CAT安装教程 首先安装mysql数据库,具体步骤参阅<mysql免安装教程>--http://www.cnblogs.com/halberts/p/8723938.html 下载CAT代 ...

  10. 带提示范围的猜数小游戏--python

    import random random_number = random.randint(1, 99) print(random_number) start_data = 1 end_data = 9 ...