HADOOP docker(一):安装hadoop实验集群(略操蛋)
一.环境准备
1.1.机器规划
| 主机名 别名 | IP | 角色 |
| 9321a27a2b91 hadoop1 | 172.17.0.10 | NN1 ZK RM |
| 7c3a3c9cd595 hadoop2 | 172.17.0.9 | NN2 ZK RM JOBHIS |
| f89eaf2a2548 hadoop3 | 172.17.0.8 | DN ZK ND |
| 28620eee1426 hadoop4 | 172.17.0.7 | DN QJM1 ND |
| ae1f06bd04c8 hadoop5 | 172.17.0.6 | DN QJM2 ND |
| 11c433a003b6 hadoop6 | 172.17.0.5 | DN QJM3 ND |
1.2.用户与组
| 用户 | 组 | 作用 |
| hdfs | hadoop | 管理HDFS |
| yarn | hadoop | 管理yarn |
| zookeeper | hadoop | 管理zookeeper |
| hvie | hadoop | 管理hvie |
| hbase | hadoop | 管理hbase |
groupadd hadoopuseradd -g hadoop hdfspasswd hdfs <<EOFhdfshdfsEOFuseradd -g hadoop yarnpasswd yarn <<EOFyarnyarnEOFuseradd -g hadoop zookeeperpasswd zookeeper <<EOFzookeeperzookeeperEOFuseradd -g hadoop hivepasswd hive <<EOFhivehiveEOFuseradd -g hadoop hbasepasswd hbase <<EOFhbasehbaseEOFecho user added!
1.3.修改/etc/hosts
echo "127.0.0.1 localhost localhost">/etc/hostsecho "172.17.0.6 9321a27a2b91 hadoop1">>/etc/hostsecho "172.17.0.7 7c3a3c9cd595 hadoop2">>/etc/hostsecho "172.17.0.8 f89eaf2a2548 hadoop3">>/etc/hostsecho "172.17.0.9 28620eee1426 hadoop4">>/etc/hostsecho "172.17.0.10 ae1f06bd04c8 hadoop5">>/etc/hostsecho "172.17.0.11 11c433a003b6 hadoop6">>/etc/hosts
1.4. ssh 免密码登录
su hdfsssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.6ssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.7ssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.8ssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.9ssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.10ssh-copy-id -i ~/.ssh/id_rsa.pub 172.17.0.11
1.5.修改ulimit
[hdfs@9321a27a2b91 root]$ ulimit -acore file size (blocks,-c) unlimiteddata seg size (kbytes,-d) unlimitedscheduling priority (-e)0file size (blocks,-f) unlimitedpending signals (-i)95612max locked memory (kbytes,-l)64max memory size (kbytes,-m) unlimitedopen files (-n)65536pipe size (512 bytes,-p)8POSIX message queues (bytes,-q)819200real-time priority (-r)0stack size (kbytes,-s)8192cpu time (seconds,-t) unlimitedmax user processes (-u)1024virtual memory (kbytes,-v) unlimitedfile locks (-x) unlimited
hdfs hard nfile 65536hdfs soft nfile 65536yarn hard nfile 65536yarn soft nfile 65536......
6.关闭防火墙
service iptables stop
7.关闭seLinux
setenforce 0
二.软件准备
2.1.安装jdk
[root@9321a27a2b91 ~]#mkdir /usr/local/java[root@9321a27a2b91 ~]#cp jdk-8u121-linux-x64.tar.gz /usr/local/java/[root@9321a27a2b91 ~]#chown -R hdfs:hadoop /usr/local/java/[root@9321a27a2b91 ~]#su hdfs- [hdfs@9321a27a2b91 root]$ cd /usr/local/java/jdk-8u121-linux-x64.tar.gz
[hdfs@9321a27a2b91 java]$ tar -zxvf jdk-8u121-linux-x64.tar.gz
mkdir /usr/local/javachown hdfs:hadoop /usr/local/javasu hdfsscp -r hdfs@hadoop1:/usr/local/java/jdk1.8.0_121 /usr/local/java
2.2.hadoop安装包
[root@9321a27a2b91 ~]# mkdir /opt/hadoop[root@9321a27a2b91 ~]# chown hdfs:hadoop hadoop-2.7.3.tar.gz[root@9321a27a2b91 ~]# chown hdfs:hadoop /opt/hadoop[root@9321a27a2b91 ~]# cp hadoop-2.7.3.tar.gz /opt/hadoop[root@9321a27a2b91 ~]# su hdfs[hdfs@9321a27a2b91 root]$ cd /opt/hadoop/[hdfs@9321a27a2b91 hadoop]$ tar -zxvf hadoop-2.7.3.tar.gz
2.3.ntp服务
yum -y install ntp
#本子网内主机都可以同步restrict 172.17.0.0 mask 255.255.0.0 nomodify#优先时间服务器server 172.17.0.10 prefer#日志文件位置logfile /var/log/ntp.log
[root@9321a27a2b91 hadoop]# service ntpd startStarting ntpd:[ OK ][root@9321a27a2b91 hadoop]# service ntpd statusntpd dead but pid file exists
3Apr11:20:08 ntpd[732]: ntp_io: estimated max descriptors:65536, initial socket boundary:163Apr11:20:08 ntpd[732]:Listen and drop on 0 v4wildcard 0.0.0.0 UDP 1233Apr11:20:08 ntpd[732]:Listen and drop on 1 v6wildcard :: UDP 1233Apr11:20:08 ntpd[732]:Listen normally on 2 lo 127.0.0.1 UDP 1233Apr11:20:08 ntpd[732]:Listen normally on 3 eth0 172.17.0.10 UDP 1233Apr11:20:08 ntpd[732]:Listen normally on 4 lo ::1 UDP 1233Apr11:20:08 ntpd[732]:Listen normally on 5 eth0 fe80::42:acff:fe11:a UDP 1233Apr11:20:08 ntpd[732]:Listening on routing socket on fd #22 for interface updates3Apr11:20:08 ntpd[732]:0.0.0.0 c016 06 restart3Apr11:20:08 ntpd[732]: ntp_adjtime() failed:Operation not permitted3Apr11:20:08 ntpd[732]:0.0.0.0 c012 02 freq_set kernel 0.000 PPM3Apr11:20:08 ntpd[732]:0.0.0.0 c011 01 freq_not_set3Apr11:20:08 ntpd[732]: cap_set_proc() failed to drop root privileges:Operation not permitted
OPTIONS="-u ntp:ntp -p /var/run/ntpd.pid -g"
echo "# Drop root to id 'ntp:ntp' by default.">/etc/sysconfig/ntpdecho "#OPTIONS="-u ntp:ntp -p /var/run/ntpd.pid -g" ">>/etc/sysconfig/ntpd
[root@9321a27a2b91 hadoop]# service ntpd startStarting ntpd:[ OK ][root@9321a27a2b91 hadoop]# service ntpd statusntpd (pid 796) is running..
server 172.17.0.10 prefer
2.4.mysql 数据库
三.安装hadoop及其组件
3.1 安装HDFS及YARN
3.1.1 设置环境变量.bash_profile
su hdfs- vi ~.bash_profile
JAVA_HOME=/usr/local/java/jdk1.8.0_121CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib:$CLASSHADOOP_HOME=/opt/hadoop/hadoop-2.7.3HADOOP_PREFIX=/opt/hadoop/hadoop-2.7.3HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoopHADOOP_YARN_HOME=$HADOOP_HOMELD_LIBRARY_PATH=$LD_LIBRARY_PATH:$JAVA_HOME/jre/lib/amd64/serverPATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbinexport PATH
su hdfsscp -r hdfs@hadoop1:/home/hdfs/.bash_profile ~
3.1.2 设置hadoop启动的环境配置文件xxx-evn.sh
3.1.2.1 hadoop-env.s
export JAVA_HOME=/usr/local/java/jdk1.8.0_121- export HADOOP_HOME=/opt/hadoop/hadoop-2.7.3
#hadoop进程的最大heapsize包括namenode/datanode/ secondarynamenode等,默认1000M#export HADOOP_HEAPSIZE=#namenode的初始heapsize,默认取上面的值,按需要分配#export HADOOP_NAMENODE_INIT_HEAPSIZE=""#JVM启动参数,默认为空export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"#还可以单独配置各个组件的内存:export HADOOP_NAMENODE_OPTS=export HADOOP_DATANODE_OPTSexport HADOOP_SECONDARYNAMENODE_OPTS#设置hadoop日志,默认是$HADOOP_HOME/logexport HADOOP_LOG_DIR=${HADOOP_LOG_DIR}/$USER
3.1.2.2 yarn-env.sh
export JAVA_HOME=/usr/local/java/jdk1.8.0_121JAVA_HEAP_MAX=-Xmx1000m# YARN_HEAPSIZE=1000 #yarn 守护进程heapsize#export YARN_RESOURCEMANAGER_HEAPSIZE=1000 #单独设置RESOURCEMANAGER的HEAPSIZE#export YARN_TIMELINESERVER_HEAPSIZE=1000 #单独设置TIMELINESERVER(jobhistoryServer)的HEAPSIZE#export YARN_RESOURCEMANAGER_OPTS= #单独设置RESOURCEMANAGER的JVM选项#export YARN_NODEMANAGER_HEAPSIZE=1000 #单独设置NODEMANAGER的HEAPSIZE#export YARN_NODEMANAGER_OPTS= #单独设置NODEMANAGER的JVM选项
3.1.3 修改hadoop配置文件
3.1.3.1 修改core-site.xml
<configuration><property><name>fs.defaultFS</name><value>hdfs://hadoop1:9000</value><description>HDFS 端口</description></property><property><name>io.file.buffer.size</name><value>131072</value></property><property><name>hadoop.tmp.dir</name><value>/opt/hadoop/hadoop-2.7.3/tmp</value><description>默认值/tmp/hadoop-${user.name},修改成持久化的目录</description></property></configuration>
mkdir ${HADOOP_HOME}/tmp
3.1.3.2 hdfs-site.xm
<configuration><property><name>dfs.replication</name><value>3</value>- <description>数据块的备份数量</description>
</property><property><name>dfs.namenode.name.dir</name><value>/opt/hadoop/hadoop-2.7.3/namenodedir</value>- <description>保存namenode元数据的目录,要自己创建</description>
</property><property><name>dfs.blocksize</name><value>134217728</value><description>数据块大小,128M</description></property><property><name>dfs.datanode.data.dir</name><value>/opt/hadoop/hadoop-2.7.3/datadir</value><description>datanode 数据目录</description></property></configuration>
mkdir ${HADOOP_HOME}/datadirmkdir${HADOOP_HOME}/namenodedir
3.1.3.3 mapred-site.xml
| Parameter | Value | Notes |
|---|---|---|
| mapreduce.framework.name | yarn | Execution framework set to Hadoop YARN. MR任务执行框架 |
| mapreduce.map.memory.mb | 1536 | Larger resource limit for maps. map内存上限 |
| mapreduce.map.java.opts | -Xmx1024M | Larger heap-size for child jvms of maps. map的子进程虚拟机heapsize |
| mapreduce.reduce.memory.mb | 3072 | Larger resource limit for reduces. redouce任务内存上限 |
| mapreduce.reduce.java.opts | -Xmx2560M | Larger heap-size for child jvms of reduces. redouce的子进程虚拟机heapsize |
| mapreduce.task.io.sort.mb | 512 | Higher memory-limit while sorting data for efficiency. 排序内存 |
| mapreduce.task.io.sort.factor | 100 | More streams merged at once while sorting files. 排序因子 |
| mapreduce.reduce.shuffle.parallelcopies | 50 | Higher number of parallel copies run by reduces to fetch outputs from very large number of maps. 并行数 |
| Parameter | Value | Notes |
|---|---|---|
| mapreduce.jobhistory.address | MapReduce JobHistory Server host:port | Default port is 10020. jobhistory地址:主机+端口 |
| mapreduce.jobhistory.webapp.address | MapReduce JobHistory Server Web UI host:port | Default port is 19888. jobhistory web端口 |
| mapreduce.jobhistory.intermediate-done-dir | /mr-history/tmp | Directory where history files are written by MapReduce jobs. |
| mapreduce.jobhistory.done-dir | /mr-history/done | Directory where history files are managed by the MR JobHistory Server. |
<configuration><property><name>mapreduce.framework.name</name><value>yarn</value><description>使用yarn来管理mr</description></property><property><name>mapreduce.jobhistory.address</name><value>hadoop2</value></property><property><name>mapreduce.jobhistory.webapp.address</name><value>hadoop2</value></property><property><name>mapreduce.jobhistory.intermediate-done-dir</name><value>/opt/hadoop/hadoop-2.7.3/mrHtmp</value></property><property><name>mapreduce.jobhistory.done-dir</name><value>/opt/hadoop/hadoop-2.7.3/mrhHdone</value></property></configuration>
3.1.3.4 yarn-site.xml
| Parameter | Value | Notes |
|---|---|---|
| yarn.resourcemanager.address | ResourceManager host:port for clients to submit jobs. | host:port If set, overrides the hostname set in yarn.resourcemanager.hostname. resourcemanager的地址,格式 主机:端口 |
| yarn.resourcemanager.scheduler.address | ResourceManager host:port for ApplicationMasters to talk to Scheduler to obtain resources. | host:port If set, overrides the hostname set in yarn.resourcemanager.hostname. 调度器地址 ,覆盖yarn.resourcemanager.hostname |
| yarn.resourcemanager.resource-tracker.address | ResourceManager host:port for NodeManagers. | host:port If set, overrides the hostname set in yarn.resourcemanager.hostname. datanode像rm报告的端口,
覆盖 yarn.resourcemanager.hostname |
| yarn.resourcemanager.admin.address | ResourceManager host:port for administrative commands. | host:port If set, overrides the hostname set in yarn.resourcemanager.hostname. RM管理地址,覆盖 yarn.resourcemanager.hostname |
| yarn.resourcemanager.webapp.address | ResourceManager web-ui host:port. | host:port If set, overrides the hostname set in yarn.resourcemanager.hostname. RM web地址,有默认值 |
| yarn.resourcemanager.hostname | ResourceManager host. | host Single hostname that can be set in place of setting allyarn.resourcemanager*address resources. Results in default ports for ResourceManager components. RM的主机,使用默认端口 |
| yarn.resourcemanager.scheduler.class | ResourceManager Scheduler class. | CapacityScheduler (recommended), FairScheduler (also recommended), or FifoScheduler |
| yarn.scheduler.minimum-allocation-mb | Minimum limit of memory to allocate to each container request at the Resource Manager. | In MBs 最小容器内存(每个container最小内存) |
| yarn.scheduler.maximum-allocation-mb | Maximum limit of memory to allocate to each container request at the Resource Manager. | In MBs 最大容器内存(每个container最大内存) |
| yarn.resourcemanager.nodes.include-path /yarn.resourcemanager.nodes.exclude-path | List of permitted/excluded NodeManagers. | If necessary, use these files to control the list of allowable NodeManagers. 哪些datanode可以被RM管理 |
| yarn.nodemanager.resource.memory-mb | Resource i.e. available physical memory, in MB, for given NodeManager | Defines total available resources on the NodeManager to be made available to running containers Yarn在NodeManager最大内存 |
| yarn.nodemanager.vmem-pmem-ratio | Maximum ratio by which virtual memory usage of tasks may exceed physical memory | The virtual memory usage of each task may exceed its physical memory limit by this ratio. The total amount of virtual memory used by tasks on the NodeManager may exceed its physical memory usage by this ratio. 任务使用的虚拟内存超过被允许的推理内存的比率,超过则kill掉 |
| yarn.nodemanager.local-dirs | Comma-separated list of paths on the local filesystem where intermediate data is written. | Multiple paths help spread disk i/o. datamanager的本地目录 |
| yarn.nodemanager.log-dirs | Comma-separated list of paths on the local filesystem where logs are written. | Multiple paths help spread disk i/o. datamanager日志目录 |
| yarn.nodemanager.log.retain-seconds | 10800 | Default time (in seconds) to retain log files on the NodeManager Only applicable if log-aggregation is disabled. |
| yarn.nodemanager.remote-app-log-dir | /logs | HDFS directory where the application logs are moved on application completion. Need to set appropriate permissions. Only applicable if log-aggregation is enabled. |
| yarn.nodemanager.remote-app-log-dir-suffix | logs | Suffix appended to the remote log dir. Logs will be aggregated to ${yarn.nodemanager.remote-app-log-dir}/${user}/${thisParam} Only applicable if log-aggregation is enabled. |
| yarn.nodemanager.aux-services | mapreduce_shuffle | Shuffle service that needs to be set for Map Reduce applications. shuffle服务类型 |
| yarn.acl.enable | true /false | Enable ACLs? Defaults to false. 是否开启ACL |
| yarn.admin.acl | Admin ACL | ACL to set admins on the cluster. ACLs are of for comma-separated-usersspacecomma-separated-groups. Defaults to special value of * which meansanyone. Special value of just space means no one has access. ACL用户,用,分隔 如root,yarn |
| yarn.log-aggregation-enable | false | Configuration to enable or disable log aggregation 启用日志聚集.日志聚焦到一个节点 |
<configuration><!-- Site specific YARN configuration properties --><property><name>yarn.resourcemanager.hostname</name><value>hadoop1</value><description>设置resourcemanager节点</description></property><!-- Site specific YARN configuration properties --><property><name>yarn.nodemanager.aux-services</name><value>mapreduce_shuffle</value><description>设置nodemanager的aux服务</description></property></configuration>
3.1.4 设置slaves文件
vi $HADOOP_HOME/et/hadoop/slaveshadoop3hadoop4hadoop5hadoop6
3.1.5 启动HADOOP
3.1.5.1 把hadoop配置复制到其它机器上
mkdir /opt/hadoopchown hdfs:hadoop /opt/hadoopsu hdfsscp -r hdfs@hadoop1:/opt/hadoop/hadoop-2.7.3 /opt/hadoop
$HADOOP_HOME/bin/hdfs namenode -format
3.1.5.3 启动hdfs
[hdfs@9321a27a2b91 hadoop-2.7.3]$ start-dfs.shStarting namenodes on [hadoop1]hadoop1: starting namenode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-namenode-9321a27a2b91.outhadoop3: starting datanode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-datanode-f89eaf2a2548.outhadoop4: starting datanode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-datanode-28620eee1426.outhadoop5: starting datanode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-datanode-ae1f06bd04c8.outhadoop6: starting datanode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-datanode-11c433a003b6.outStarting secondary namenodes [0.0.0.0]0.0.0.0: starting secondarynamenode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-secondarynamenode-9321a27a2b91.out
[hdfs@9321a27a2b91 hadoop]$ jps11105 Jps10981 SecondaryNameNode10777 NameNode
[hdfs@9321a27a2b91 hadoop-2.7.3]$ hdfs dfs -put NOTICE.txt /[hdfs@9321a27a2b91 hadoop-2.7.3]$ hdfs dfs -ls /Found 1 items-rw-r--r-- 3 hdfs supergroup 14978 2017-04-03 19:15 /NOTICE.txt
[root@9321a27a2b91 hdfs]# curl hadoop1:50070<!--Licensed to the Apache Software Foundation (ASF) under one or morecontributor license agreements. See the NOTICE file distributed withthis work for additional information regarding copyright ownership.................
3.1.5.4 启动yarn
[hdfs@9321a27a2b91 hadoop]$ start-yarn.shstarting yarn daemonsstarting resourcemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-resourcemanager-9321a27a2b91.outhadoop5: starting nodemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-nodemanager-ae1f06bd04c8.outhadoop6: starting nodemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-nodemanager-11c433a003b6.outhadoop3: starting nodemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-nodemanager-f89eaf2a2548.outhadoop4: starting nodemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-nodemanager-28620eee1426.out
[hdfs@9321a27a2b91 hadoop]$ jps11105 Jps10981 SecondaryNameNode10777 NameNode10383 ResourceManager
[hdfs@9321a27a2b91 hadoop-2.7.3]$ bin/hdfs dfs -mkdir /user[hdfs@9321a27a2b91 hadoop-2.7.3]$ bin/hdfs dfs -mkdir /user/hdfs[hdfs@9321a27a2b91 hadoop-2.7.3]$ bin/hdfs dfs -put etc/hadoop input...............17/04/12 12:38:24 INFO mapreduce.JobSubmitter: number of splits:3017/04/12 12:38:24 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1491968887469_000317/04/12 12:38:24 INFO mapreduce.JobSubmitter: Cleaning up the staging area /tmp/hadoop-yarn/staging/hdfs/.staging/job_1491968887469_0003java.lang.IllegalArgumentException: Does not contain a valid host:port authority: hadoop2at org.apache.hadoop.net.NetUtils.createSocketAddr(NetUtils.java:213)........................
[hdfs@9321a27a2b91 hadoop]$ start-dfs.shStarting namenodes on [9321a27a2b91]The authenticity of host '9321a27a2b91 (172.17.0.10)' can't be established.RSA key fingerprint is 60:0c:61:73:2c:49:ef:e3:f7:61:c9:27:93:5a:1d:c7.Are you sure you want to continue connecting (yes/no)?
3.1.5.6 各个节点上启动hdfs守护进程
[hdfs@11c433a003b6 hadoop-2.7.3]$ $HADOOP_HOME/sbin/hadoop-daemons.sh start datanodeThe authenticity of host '28620eee1426 (172.17.0.7)' can't be established.RSA key fingerprint is 60:0c:61:73:2c:49:ef:e3:f7:61:c9:27:93:5a:1d:c7.Are you sure you want to continue connecting (yes/no)? The authenticity of host '11c433a003b6 (172.17.0.5)' can't be established.RSA key fingerprint is 60:0c:61:73:2c:49:ef:e3:f7:61:c9:27:93:5a:1d:c7.Are you sure you want to continue connecting (yes/no)? The authenticity of host 'ae1f06bd04c8 (172.17.0.6)' can't be established.RSA key fingerprint is 60:0c:61:73:2c:49:ef:e3:f7:61:c9:27:93:5a:1d:c7.Are you sure you want to continue connecting (yes/no)? f89eaf2a2548: datanode running as process 5764. Stop it first.
[hdfs@11c433a003b6 hadoop-2.7.3]$ $HADOOP_HOME/sbin/hadoop-daemons.sh --config $HADOOP_CONF_DIR --script hdfs start datanodecat: /opt/hadoop/hadoop-2.7.3/etc/hadoop/slaves: No such file or directory
usage="Usage: hadoop-daemons.sh [--config confdir] [--hosts hostlistfile] [start|stop] command args..."# if no args specified, show usageif[ $# -le 1 ]; thenecho $usageexit 1fibin=`dirname "${BASH_SOURCE-$0}"`bin=`cd "$bin"; pwd`DEFAULT_LIBEXEC_DIR="$bin"/../libexecHADOOP_LIBEXEC_DIR=${HADOOP_LIBEXEC_DIR:-$DEFAULT_LIBEXEC_DIR}. $HADOOP_LIBEXEC_DIR/hadoop-config.shexec "$bin/slaves.sh"--config $HADOOP_CONF_DIR cd "$HADOOP_PREFIX" \; "$bin/hadoop-daemon.sh"--config $HADOOP_CONF_DIR "$@"
[hdfs@9321a27a2b91 hadoop]$ $HADOOP_PREFIX/sbin/hadoop-daemon.sh --config $HADOOP_CONF_DIR --script hdfs start namenodestarting namenode, logging to /opt/hadoop/hadoop-2.7.3/logs/hadoop-hdfs-namenode-9321a27a2b91.out
以下节点启动nodemanager:
[hdfs@f89eaf2a2548 hadoop-2.7.3]$ $HADOOP_YARN_HOME/sbin/yarn-daemon.sh --config $HADOOP_CONF_DIR start resourcemanagerstarting resourcemanager, logging to /opt/hadoop/hadoop-2.7.3/logs/yarn-hdfs-resourcemanager-f89eaf2a2548.out
[hdfs@9321a27a2b91 hadoop-2.7.3]$ bin/hdfs dfs -put etc/hadoop input...............17/04/1212:38:24 INFO mapreduce.JobSubmitter: number of splits:3017/04/1212:38:24 INFO mapreduce.JobSubmitter:Submitting tokens for job: job_1491968887469_000317/04/1212:38:24 INFO mapreduce.JobSubmitter:Cleaning up the staging area /tmp/hadoop-yarn/staging/hdfs/.staging/job_1491968887469_0003java.lang.IllegalArgumentException:Does not contain a valid host:port authority: hadoop2at org.apache.hadoop.net.NetUtils.createSocketAddr(NetUtils.java:213)........................
<property><name>mapreduce.jobhistory.address</name><value>7c3a3c9cd595</value></property><property><name>mapreduce.jobhistory.webapp.address</name><value>7c3a3c9cd595</value></property>
<property><name>mapreduce.jobhistory.address</name><value>7c3a3c9cd595:10020</value></property><property><name>mapreduce.jobhistory.webapp.address</name><value>7c3a3c9cd595:19888</value></property>
2017-04-0319:13:12,328 WARN org.apache.hadoop.hdfs.server.datanode.DataNode:IOExceptionin offerServicejava.io.EOFException:End of FileException between local host is:"ae1f06bd04c8/172.17.0.6"; destination host is:"hadoop1":9000;: java.io.EOFException;For more details see: http://wiki.apache.org/hadoop/EOFExceptionat sun.reflect.NativeConstructorAccessorImpl.newInstance0(NativeMethod)at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
四.总结
4.1.hadoop的安装步骤
4.2问题总结
HADOOP docker(一):安装hadoop实验集群(略操蛋)的更多相关文章
- 使用docker安装部署Spark集群来训练CNN(含Python实例)
使用docker安装部署Spark集群来训练CNN(含Python实例) http://blog.csdn.net/cyh_24/article/details/49683221 实验室有4台神服务器 ...
- Hadoop 2.6.4单节点集群配置
1.安装配置步骤 # wget http://download.oracle.com/otn-pub/java/jdk/8u91-b14/jdk-8u91-linux-x64.rpm # rpm -i ...
- 基于Hadoop 2.2.0的高可用性集群搭建步骤(64位)
内容概要: CentSO_64bit集群搭建, hadoop2.2(64位)编译,安装,配置以及测试步骤 新版亮点: 基于yarn计算框架和高可用性DFS的第一个稳定版本. 注1:官网只提供32位re ...
- Hadoop加zookeeper构建高可靠集群
事前准备 1.更改Linux主机名,每个人都有配置 vim /etc/sysconfig/network NETWORKING=yes HOSTNAME=hadoop-server1 2.改动IP / ...
- Hadoop及Zookeeper+HBase完全分布式集群部署
Hadoop及HBase集群部署 一. 集群环境 系统版本 虚拟机:内存 16G CPU 双核心 系统: CentOS-7 64位 系统下载地址: http://124.202.164.6/files ...
- Hadoop入门 完全分布式运行模式-集群配置
目录 集群配置 集群部署规划 配置文件说明 配置集群 群起集群 1 配置workers 2 启动集群 总结 3 集群基本测试 上传文件到集群 查看数据真实存储路径 下载 执行wordcount程序 配 ...
- [Hadoop] - Win7下提交job到集群上去
一般我们采用win开发+linux hadoop集群的方式进行开发,使用插件:hadoop-***-eclipse-plugin. 运行程序的时候,我们一般采用run as application或者 ...
- Docker安装部署es集群
Docker安装部署es集群:环境准备:已安装docker的centos服务器一台1. 拉取es版本docker pull elasticsearch:5.6.82. 新建文件夹 数据挂载目录 和 配 ...
- docker安装Elasticsearch7.6集群并设置密码
docker安装Elasticsearch7.6集群并设置密码 Elasticsearch从6.8开始, 允许免费用户使用X-Pack的安全功能, 以前安装es都是裸奔.接下来记录配置安全认证的方法. ...
随机推荐
- 最新SQL手工注入语句&SQL注入大全
看看下面的1.判断是否有注入;and 1=1;and 1=2 2.初步判断是否是mssql;and user>0 3.判断数据库系统;and (select count(*) from syso ...
- Deferred Lighting
Deferred lighting separate lighting from rendering and make lighting a completely image-space techni ...
- ios reloadsection 位置偏移
这个问题再iOS11之前不会发生,目前仅在iOS11机型上会出现. 解决这个问题很简单,只需要你在初始化tableview的时候,把estimate的高度都设为0即可. self.tableView. ...
- [开源]JSON文本格式化工具(简码万能助手开源扩展程序)
现在的网站大多都是使用json进行API式前后端数据交互, 有时抓包得到的是一串没格式化的JSON文本, 不太方便分析, 所以我自行写了个开源扩展程序, 可以方便地格式化JSON文本. 当然,你也 ...
- 20181029NOIP模拟赛T2
2.追捕 [题目背景] Duan2baka:“jmsyzsfq天下第一蠢!” jmsyzsfq:“你说什么?!” [题目描述] 于是Duan2baka开始了逃亡的旅程,而jmsyzsfq也开始追捕Du ...
- 2018 Wannafly summer camp Day8--连通块计数
连通块计数 描述 题目描述: 小 A 有一棵长的很奇怪的树,他由 n 条链和 1 个点作为根构成,第 i条链有 ai 个点,每一条链的一端都与根结点相连. 现在小 A 想知道,这棵长得奇怪的树有多少 ...
- 前端的字符串时间如何自动转换为后端Java的Date属性,介绍springMVC中如何解决时间转换问题
平常在开发过程中,前端选择时间一般都要使用时间选择插件,但是这种插件选出来的时间都是字符串类型,我们该怎么转换为后端的Date呢?/? 前端效果如下(笔者用的是layDate5.0插件): 修改前的后 ...
- jQuery DOM/属性/CSS操作
jQuery DOM 操作 创建元素 只需要把DOM字符串传入$方法即可返回一个 jQuery 对象 var obj = $('<div class="test">&l ...
- openstack之kvm常用操作
KVM虚拟机的管理主要是通过virsh命令对虚拟机进行管理. 1. 查看KVM虚拟机配置文件及运行状态 KVM虚拟机默认配置文件位置: /etc/libvirt/qemu/ autostart目录 ...
- PHP在foreach中对$value赋值
foreach ($data as $key => $value) { $data[$key]['name'] = '测试在value中赋值';}