首先要吐槽LRJ,书上给的算法标签是“有难度,需要结合其他数据结构”,学完Manacher才发现几乎一裸题

题目的意思是问原串中有多少个wwRwwR这样的子串,其中wR表示w的反串

比较容易看出来,wwRwwR本身是一个回文串,wwR也是一个回文串

最裸的暴力是,我们枚举每一个回文串,然后判断这个回文串的左半边是不是也是个回文串

然后我们考虑用Manacher

我们考虑Manacher的工作原理,是在充分利用原先的信息的前提下,不重复,不遗漏的枚举每个回文串

也就是说,在Manacher的运算过程当中,每个回文串我们都会考虑到

也就是说,我们可以在Manacher的运作过程当中,顺便完成答案的计算,具体操作见下

我们可以画出来这样一张图

# a # b # b # a # a # b # b # a #

0 1 2 3 4 5 6 7 8

我们要更新答案的时候,处在最中间的8号位置,不失一般性,我们处在 i 号位置,要求这个位置是字符#,这个要求的原因很显然

当 i 号位置的回文半径到达4的倍数的时候,说明我们左半边的串的长度是偶数,设当前的回文半径为 r

这时候左半边的串的中心位置就是 i - r/2 ,可以自己手算一下

如果 i - r/2 处的回文半径大于等于 i - r/2 的话,那么显然左半边是回文串,我们找到了一个满足要求子串,就可以ans = max( ans, r )

代码如下:

 #include <cstring>
#include <cstdio>
#include <algorithm> using namespace std;
const int MAXN = ; int n;
char str[MAXN], s[MAXN<<]; void input() {
scanf( "%s", str ), n = strlen(str);
int p = ;
for( int i = ; i < n; ++i )
s[p++] = '#', s[p++] = str[i];
s[p++] = '#';
} int rd[MAXN<<]; // 回文半径
void manacher() {
int mx = , p = , len = *n+, ans = ;
for( int i = ; i < len; ++i ) {
if( i < mx ) rd[i] = min( rd[*p-i], mx-i );
else rd[i] = ;
while( i+rd[i] < len && i-rd[i] >= && s[i+rd[i]] == s[i-rd[i]] ) {
if( s[i] == '#' && rd[i] % == && rd[i-rd[i]/] >= rd[i]/ )
ans = max( ans, rd[i] );
++rd[i];
}
if( i+rd[i] > mx ) mx = i+rd[i], p = i;
}
printf( "%d\n", ans );
} int main() {
int T; scanf( "%d", &T );
while( T-- ) input(), manacher();
return ;
}

【题解】Casting Spells LA 4975 UVa 1470 双倍回文 SDOI 2011 BZOJ 2342 Manacher的更多相关文章

  1. 洛谷 P4287 [SHOI2011]双倍回文题解

    前言 用了一种很奇怪的方法来解,即二分判断回文,再进行某些奇怪的优化.因为这个方法很奇怪,所以希望如果有问题能够 hack 一下. 题解 我们发现,这题中要求的是字符串 \(SS'SS'\),其中 \ ...

  2. BZOJ2342: [Shoi2011]双倍回文

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 923  Solved: 317[Submit][Status ...

  3. 【BZOJ2342】双倍回文(回文树)

    [BZOJ2342]双倍回文(回文树) 题面 BZOJ 题解 构建出回文树之后 在\(fail\)树上进行\(dp\) 如果一个点代表的回文串长度为\(4\)的倍数 并且存在长度为它的一半的回文后缀 ...

  4. BZOJ 2342: [Shoi2011]双倍回文 马拉车算法/并查集

    2342: [Shoi2011]双倍回文 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1123  Solved: 408 题目连接 http://w ...

  5. BZOJ 2342: 【SHOI2011】 双倍回文

    题目链接:双倍回文 回文自动机第二题.构出回文自动机,那么一个回文串是一个“双倍回文”,当且仅当代表这个串的节点\(u\)顺着\(fail\)指针往上跳,可以找到一个节点\(x\)满足\(2len_x ...

  6. [SHOI2011]双倍回文 manacher

    题面: 洛谷:[SHOI2011]双倍回文‘ 题解: 首先有一个性质,本质不同的回文串最多O(n)个. 所以我们可以对于每个i,求出以这个i为结尾的最长回文串,然后以此作为长串,并判断把这个长串从中间 ...

  7. BZOJ 2342 [Shoi2011]双倍回文(manacher+并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2342 [题目大意] 记Wr为W串的倒置,求最长的形如WWrWWr的串的长度. [题解] ...

  8. 「BZOJ 2342」「SHOI 2011」双倍回文「Manacher」

    题意 记\(s_R\)为\(s\)翻转后的串,求一个串最长的形如\(ss_Rss_R\)的子串长度 题解 这有一个复杂度明显\(O(n)\)的做法,思路来自网上某篇博客 一个双倍回文串肯定当且仅当本身 ...

  9. BZOJ2342:[SHOI2011]双倍回文

    浅谈\(Manacher\):https://www.cnblogs.com/AKMer/p/10431603.html 题目传送门:https://www.lydsy.com/JudgeOnline ...

随机推荐

  1. 82. Single Number [easy]

    Description Given 2*n + 1 numbers, every numbers occurs twice except one, find it. Example Given [1, ...

  2. 剑指offer-整数中1出现的次数27

    题目描述 求出1~13的整数中1出现的次数,并算出100~1300的整数中1出现的次数?为此他特别数了一下1~13中包含1的数字有1.10.11.12.13因此共出现6次,但是对于后面问题他就没辙了. ...

  3. 关于wcf服务编译平台是x86, 运行平台是x64时,如何调试

    关于调试CTDC项目中的的 wcf服务时注意事项: 因为wcf项目引用的的 x86的程序集,所以wcf生成的目标平台为x86.故在64系统上调试需要执行下面的脚本 具体操作步骤: 1. 必须使用201 ...

  4. SIG蓝牙mesh笔记3_网络结构

    目录 3. Mesh Networking 3.1 Bearers 承载层 3.2 Network Layer 网络层 3.2.3 Address validity 地址有效性 3.2.4 Netwo ...

  5. 基于Kubernetes(k8s)网络方案演进

    VIP PaaS在接近两年时间里,基于kubernetes主要经历四次网络方案的变迁: 1. kubernetes + flannel 2. 基于Docker libnetwork的网络定制 3. k ...

  6. net::ERR_ABORTED ,引入js文件出现报错的解决方法

    在head头里面添加 <mvc:annotation-driven enable-matrix-variables="true"></mvc:annotation ...

  7. ZOJ 3686 A Simple Tree Problem(线段树)

    Description Given a rooted tree, each node has a boolean (0 or 1) labeled on it. Initially, all the ...

  8. Advanced Fruits (最大公共子序列的路径打印)

    The company "21st Century Fruits" has specialized in creating new sorts of fruits by trans ...

  9. LintCode-38.搜索二维矩阵 II

    搜索二维矩阵 II 写出一个高效的算法来搜索m×n矩阵中的值,返回这个值出现的次数. 这个矩阵具有以下特性: 每行中的整数从左到右是排序的. 每一列的整数从上到下是排序的. 在每一行或每一列中没有重复 ...

  10. iOS-开发过程中应用间跳转问题