The manuscript of Deep Reinforcement Learning is available now! It makes significant improvements to Deep Reinforcement Learning: An Overview, which has received 100+ citations, by extending its latest version more than one year ago from 70 pages to 150 pages.

It draws a big picture of deep reinforcement learning (RL) with many details. It covers contemporary work in historical contexts. It endeavours to answer the following questions: 1) Why deep? 2) What is the state of the art? and, 3) What are the issues, and potential solutions? It attempts to help those who want to get more familiar with deep RL, and to serve as a reference for people interested in this fascinating area, like professors, researchers, students, engineers, managers, investors, etc. Shortcomings and mistakes are inevitable; comments and criticisms are welcome.

The manuscript introduces AI, machine learning, and deep learning briefly, and provides a mini tutorial for reinforcement learning. The following figure illustrates relationships among these concepts, with major contents for machine learning and AI .Deep reinforcement learning is reinforcement learning integrated with deep learning, or deep artificial neural networks. A blog is dedicated to Resources for Deep Reinforcement Learning.

 

The manuscript covers six core elements: value function, policy, reward, model, exploration vs. exploitation, and representation; six important mechanisms: attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn; and twelve applications: games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art.

 

Deep reinforcement learning has made exceptional achievements, e.g., DQN applying to Atari games ignited this wave of deep RL, and AlphaGo (Zero) and DeepStack set landmarks for AI. Deep RL has many newly invented algorithms/architectures, e.g., DQNA3CTRPOPPODDPGTrust-PCLGPSUNREALDNC, etc. Moreover, deep RL has been enjoying very abound and diverse applications, e.g., Capture the FlagDota 2StarCraft IIroboticscharacter animationconversational AIneural architecture design (AutoML)data center coolingrecommender systemsdata augmentationmodel compressioncombinatorial optimizationprogram synthesistheorem provingmedical imagingmusic, and chemical retrosynthesis, so on and so forth. A blog is dedicated to Reinforcement Learning applications.

In general, RL is probably helpful, if a problem can be regarded as or transformed to a sequential decision making problem, and states, actions, maybe rewards, can be constructed; sometimes the problem may not appear as an RL problem on the surface. Roughly speaking, if a task involves some manual designed “strategy”, then there is a chance for reinforcement learning to help. Creativity would push the frontiers of deep RL further with respect to core elements, important mechanisms, and applications.

Albeit being so successful, deep RL encounters many issues, like credit assignment, sparse reward, sample efficiency, instability, divergence, interpretability, safety, etc.; even reproducibility is an issue.

 

Six research directions are proposed as both challenges and opporrtunities. There are already some progress in these directions, e.g., DopamineTStarBotsMORELGQN, visual reasoningneural-symbolic learningUPNcausal InfoGANmeta-gradient RL, along with many applications as above.

  1. systematic, comparative study of deep RL algorithms
  2. “solve” multi-agent problems
  3. learn from entities, but not just raw inputs
  4. design an optimal representation for RL
  5. AutoRL
  6. develop killer applications for (deep) RL

It is desirable to integrate RL more deeply with AI, with more intelligence in the end-to-end mapping from raw inputs to decisions, to incorporate knowledge, to have common sense, to be more efficient, to be more interpretable, and to avoid obvious mistakes, etc., rather than working as a blackbox.

 

Deep learning and reinforcement learning, being selected as one of the MIT Technology Review 10 Breakthrough Technologies in 2013 and 2017 respectively, will play their crucial roles in achieving artificial general intelligence. David Silver proposed a conjecture: artificial intelligence = reinforcement learning + deep learning (AI = RL + DL). We will see both deep learning and reinforcement learning prospering in the coming years and beyond. Deep learning is exploding. It is the right time to nurture, educate and lead the market for reinforcement learning.

Deep learning, in this third wave of AI, will have deeper influences, as we have already seen from its many achievements. Reinforcement learning, as a more general learning and decision making paradigm, will deeply influence deep learning, machine learning, and artificial intelligence in general.

Introducing Deep Reinforcement的更多相关文章

  1. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  2. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. Learning Roadmap of Deep Reinforcement Learning

    1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...

  5. (转) Deep Reinforcement Learning: Playing a Racing Game

    Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...

  6. 论文笔记之:Dueling Network Architectures for Deep Reinforcement Learning

    Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN ...

  7. getting started with building a ROS simulation platform for Deep Reinforcement Learning

    Apparently, this ongoing work is to make a preparation for futural research on Deep Reinforcement Le ...

  8. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  9. 论文笔记之:Deep Reinforcement Learning with Double Q-learning

    Deep Reinforcement Learning with Double Q-learning Google DeepMind Abstract 主流的 Q-learning 算法过高的估计在特 ...

随机推荐

  1. 升级 macOS Mojave 后部分软件 (如 VS Code) 字体变虚的解决方法

    目前有些朋友的设备可能还是“非 Retina” 显示器,那这样如果升级到 Mojave 后你会发现文字不清晰了,这是因为 Mojave 默认关闭了文字次像素渲染字体,你需要在终端里执行: defaul ...

  2. Foundation--NSString , array and Dictionary

    一,NSString的创建 NSString*str=@" a string ";//直接创建一个字符串常量,这样创建出来的字符串不需要释放内存 NSLog(@"%@&q ...

  3. tensorflow中屏蔽输出的log信息方法

    tensorflow中可以通过配置环境变量 'TF_CPP_MIN_LOG_LEVEL' 的值,控制tensorflow是否屏蔽通知信息.警告.报错等输出信息. 使用方法: import os imp ...

  4. iOS-----使用CFNetwork实现TCP协议的通信

    使用CFNetwork实现TCP协议的通信 TCP/IP通信协议是一种可靠的网络协议,它在通信的两端各建立一个通信接口,从而在通信的两端之间形成网络虚拟链路.一旦建立了虚拟的网络链路,两端的程序就可以 ...

  5. [python]自问自答:python -m参数? ( python3.7 版本 )

    最近在看Python代码的时候看到了一种形式, 即  python -m    这种形式,   查了一些博客,发现了一篇写的还不错,转载了过来,不过那里面写的是Python2.7的环境和python3 ...

  6. Nuxt开发搭建博客系统

    nuxt.js第三方插件的使用?路由的配置pages目录自动生成路由layoutsdefault.vueerror.vueVuex的使用权限篇Mysqladvice nuxt.js 追求完美,相信大家 ...

  7. jdreact相关操作注意事项

    1:sublime 安装 babel 插件可以 识别react代码,变色,使用javascipt(babel): 2:热更新:import React, {Component } from 'reac ...

  8. 利用阿里巴巴封装的FastJSON来解析json并转换成map

    利用阿里巴巴封装的FastJSON来解析json并转换成map   package com.zkn.newlearn.json; import com.alibaba.fastjson.JSON; i ...

  9. MyBatis 知识点

    2010年,随着开发团队转投Google Code旗下,ibatis 3.x 正式更名为 Mybatis. orm工具的基本思想 无论是 hibernate.Mybatis,orm工具有一个共同点: ...

  10. 使用scrapy框架爬取自己的博文(3)

    既然如此,何不再抓一抓网页的文字内容呢? 谷歌浏览器有个审查元素的功能,就是按树的结构查看html的组织形式,如图: 这样已经比较明显了,博客的正文内容主要在div 的class = cnblogs_ ...