1. 集成学习(Ensemble Learning)原理

2. 集成学习(Ensemble Learning)Bagging

3. 集成学习(Ensemble Learning)随机森林(Random Forest)

4. 集成学习(Ensemble Learning)Adaboost

5. 集成学习(Ensemble Learning)GBDT

6. 集成学习(Ensemble Learning)算法比较

7. 集成学习(Ensemble Learning)Stacking

1. 前言

如果读了我之前的几篇集成学习的博文,相信读者们已经都对集成学习大部分知识很有了详细的学习。今天我们再来一个提升,就是我们的集大成者GBDT。GBDT在我们的Kaggle的比赛中基本获得了霸主地位,大部分的问题GBDT都能获得异常好的成绩。

2. GBDT原理

GBDT的中文名叫梯度提升树,GBDT也是集成学习Boosting家族的成员,但是却和传统的Adaboost有很大的不同。回顾下Adaboost,我们是利用前一轮迭代弱学习器的误差率来更新训练集的权重,这样一轮轮的迭代下去。GBDT也是迭代,使用了前向分布算法,但是弱学习器限定了只能使用CART回归树模型,同时迭代思路和Adaboost也有所不同。

在GBDT的迭代中,假设我们前一轮迭代得到的强学习器是\(f_{t-1}(x)\), 损失函数是\(L(y,f_{t-1}(x))\),我们本轮迭代的目标是找到一个CART回归树模型的弱学习器\(h_t(x)\),让本轮的损失函数\(L(y,f_t(x)=L(y,f_{t-1}(x)+h_t(x))\)最小。也就是说,本轮迭代找到决策树,要让样本的损失尽量变得更小。即梯度提升树是用CART树去拟合前一个弱模型的损失函数的残差,使得本轮的损失更小。

3. 提升树

回归问题提升树的前向分步算法:

假设第\(m\)个模型是\(f_m(x)\),则有以下公式
\[
f_0(x)=0
\]
\[
f_m(x)=f_{m-1}(x)+T(x,\theta_m)
\]
\[
f_M(x)=\sum_{m=1}^MT(x,\theta_m)
\]
有了模型函数后,我们就得到了损失函数:
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))
\]
其中的\(T(x,\theta)\)需要用CART树去拟合,而\(r_{m-1}\)是上一个学习器的损失的残差。
\[
r_{m-1}=L(y,f_{m-1}(x))
\]
我们举个例子,假设损失函数是平方损失函数:
\[
L(y,f(x))=(y-f(x))^2
\]
则第\(m\)个模型的损失函数
\[
L(y,f_m(x))=L(y,f_{m-1}(x)+T(x,\theta_m))=L(r_{m-1},T(x,\theta_m))=(r_{m-1}-T(x,\theta_m))^2
\]

4. 梯度提升树

前面的提升树利用加法模型和前向算法进行,当损失函数是平方损失或者指数损失的时候,很好推算,但是对于一般的损失函数,就比较难处理。这时候我们可以利用最速下降法来近似,关键是利用了损失函数的负梯度在当前模型的值

\[
r_{ti} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}
\]

输入:是训练集样本\(T={(x_1,y_1),(x_2,y_2),...(x_N,y_N)}\), 最大迭代次数\(M\), 损失函数\(L\)。

输出:强学习器\(f_M(x)\)

  1. 初始化弱学习器

\[
f_0(x) = arg min_{c}\sum\limits_{i=1}^{N}L(y_i, c)
\]

  1. 对迭代轮数\(m=1,2,...M\)有:

    1. 对样本\(i=1,2,...,N\),计算负梯度\(r_{mi} \approx -\bigg[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\bigg]_{f(x) = f_{t-1}\;(x)}\)
    2. 利用\((x_i,r_{mi})(i=1,2,..N)\), 拟合一颗CART回归树,得到第t颗回归树,其对应的叶子节点区域为\(Rmj,(j=1,2,...,J)\)。其中\(J\)为回归树t的叶子节点的个数。
    3. 对叶子区域\(j=1,2,...,J\)计算最佳拟合值\(c_{mj} = arg min_{c}\sum\limits_{x_i \in R_{mj}} L(y_i,f_{m-1}(x_i) +c)\)
    4. 更新强学习器\(f_{m}(x) = f_{m-1}(x) + \sum\limits_{j=1}^{J}c_{mj}I(x \in R_{mj})\)
  2. 得到强学习器f(x)的表达式\(f(x) = f_M(x) =f_0(x) + \sum\limits_{m=1}^{M}\sum\limits_{j=1}^{J}c_{mj}I(x \in R_{tj})\)

5. GBDT的正则化

  1. 和Adaboost类似的正则化项,即步长(learning rate)。
  2. 正则化的方式是通过子采样比例(subsample)。
  3. 对于弱学习器即CART回归树进行正则化剪枝。

6. 总结

GBDT也是需要正则化的过程,
最后总结下GBDT的优缺点。

GBDT主要的优点有:

  1. 可以灵活处理各种类型的数据,包括连续值和离散值。
  2. 在相对少的调参时间情况下,预测的准确率也可以比较高。这个是相对SVM来说的。
  3. 使用一些健壮的损失函数,对异常值的鲁棒性非常强。比如 Huber损失函数和Quantile损失函数。

GBDT的主要缺点有:

  1. 由于弱学习器之间存在依赖关系,难以并行训练数据。不过可以通过自采样的SGBT来达到部分并行。

5. 集成学习(Ensemble Learning)GBDT的更多相关文章

  1. 【Supervised Learning】 集成学习Ensemble Learning & Boosting 算法(python实现)

    零. Introduction 1.learn over a subset of data choose the subset uniformally randomly (均匀随机地选择子集) app ...

  2. 笔记︱集成学习Ensemble Learning与树模型、Bagging 和 Boosting

    本杂记摘录自文章<开发 | 为什么说集成学习模型是金融风控新的杀手锏?> 基本内容与分类见上述思维导图. . . 一.机器学习元算法 随机森林:决策树+bagging=随机森林 梯度提升树 ...

  3. 机器学习:集成学习:随机森林.GBDT

    集成学习(Ensemble Learning) 集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器.弱分类器(weak learner)指那些分类准确率只稍微好于随机猜测 ...

  4. 集成学习(Ensembling Learning)

    集成学习(Ensembling Learning) 标签(空格分隔): 机器学习 Adabost 对于一些弱分类器来说,如何通过组合方法构成一个强分类器.一般的思路是:改变训练数据的概率分布(权值分布 ...

  5. 集成学习ensemble

    集成学习里面在不知道g的情况下边学习边融合有两大派:Bagging和Boosting,每一派都有其代表性算法,这里给出一个大纲. 先来说下Bagging和Boosting之间的相同点:都是不知道g,和 ...

  6. 集成学习(ensemble method)--基于树模型

    bagging方法(自举汇聚法 bootstrap aggregating) boosting分类:最流行的是AdaBoost(adaptive boosting) 随机森林(random fores ...

  7. 集成算法——Ensemble learning

    目的:让机器学习效果更好,单个不行,群殴啊! Bagging:训练多个分类器取平均 Boosting:从弱学习器开始加强,通过加权来进行训练 (加入一棵树,比原来要强) Stacking:聚合多个分类 ...

  8. 浅谈树模型与集成学习-从决策树到GBDT

    引言   神经网络模型,特别是深度神经网络模型,自AlexNet在Imagenet Challenge 2012上的一鸣惊人,无疑是Machine Learning Research上最靓的仔,各种进 ...

  9. 集成学习的不二法门bagging、boosting和三大法宝<结合策略>平均法,投票法和学习法(stacking)

    单个学习器要么容易欠拟合要么容易过拟合,为了获得泛化性能优良的学习器,可以训练多个个体学习器,通过一定的结合策略,最终形成一个强学习器.这种集成多个个体学习器的方法称为集成学习(ensemble le ...

  10. [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林

    [白话解析] 通俗解析集成学习之bagging,boosting & 随机森林 0x00 摘要 本文将尽量使用通俗易懂的方式,尽可能不涉及数学公式,而是从整体的思路上来看,运用感性直觉的思考来 ...

随机推荐

  1. kubernetes删除pod失败

    一.概述 k8s中删除pod失败,可能是该pod有rc,rs上层控制,而且很有可能,所以删除上层对应的rc,rs,deployment即可: 删除的方法: 1.直接删除rc,rs,deployment ...

  2. C#程序证书创建工具 (Makecert.exe)

    原文地址:https://msdn.microsoft.com/zh-cn/library/bfsktky3(VS.80).aspx 证书创建工具生成仅用于测试目的的 X.509 证书.它创建用于数字 ...

  3. Mac Apache ZooKeeper 配置

    1.配置准备工作 1)配置 ZooKeeper 准备工作 下载相关软件 apache-zookeeper-v3.4.10.zip ZooKeeper 官网 ZooKeeper 配置软件下载地址,密码: ...

  4. Digital Color Meter 颜色值提取工具

    1.Digital Color Meter 简介 Digital Color Meter 是一款 Mac 自带的颜色值提取工具. 其它下载地址 Digital Color Meter for Mac, ...

  5. 《从零開始学Swift》学习笔记(Day 65)——Cocoa Touch设计模式及应用之选择器

    原创文章,欢迎转载.转载请注明:关东升的博客 实现目标与动作关联使用UIControl类addTarget(_:action:forControlEvents:)方法,演示样例代码例如以下: butt ...

  6. 安装 Vbundle 的笔记

    Vbundle 挺好用的,能够很方便管理Vim的一些插件.虽然Vbundle的安装方法看的很简单,但是它的配置却让我弄了很久,现在记录如下,方便后面安装时再出现相同的问题: 我按照这里的官方提示的安装 ...

  7. Knockout: 让ViewModel从htm中剥离出去。

    在一些Knockout例子中,直接在htm中添加scripts写viewmodel,如何能将让ViewModel从htm中剥离出去呢?从knockout官网上找到了解决方法,如下: 1.knockou ...

  8. Intellij Idea生成serialVersionUID的方法

    默认情况下Intellij IDEA是关闭了继承了java.io.Serializable的类生成serialVersionUID的警告.如果需要ide提示生成serialVersionUID,那么需 ...

  9. 安装/移除 MySQL 服务

    MySQL Community Server 下载:https://dev.mysql.com/downloads/mysql/ 以下内容使用的版本为:mysql-5.7.17-win32.zip 1 ...

  10. MariaDB/MySql 服务消失无法启动

    今天启动电脑打开数据库发现这么一个错误:  2003 can't connect to mysql server on localhost 10038  无奈去查看了服务,发现mysql服务消失了,猜 ...