『Kaggle』Sklearn中几种分类器的调用&词袋建立
几种分类器的基本调用方法
本节的目的是基本的使用这些工具,达到熟悉sklearn的流程而已,既不会设计超参数的选择原理(后面会进行介绍),也不会介绍数学原理(应该不会涉及了,打公式超麻烦,而且近期也没有系统的学习机器学习数学原理的计划,下学期可能会重拾cs229,当然如果在上课展示或者实验室任务中用到的特定方法还是很可能用博客记录一下的,笑)。
Logistic & SGDC
'''Logistic & SGDC''' '''数据预处理'''
import numpy as np
import pandas as pd column_names = ['Sample code number', 'Clump Trickness', 'Uniformity of Cell Size', 'Uniformity of Cell Shape',
'Marginal Adhesion', 'Single Epithelial Cell Size', 'Bare Nuclei', 'Bland Chromatin',
'Normal Nucleoli', 'Mitoses', 'Class']
data = pd.read_csv('C:\Projects\python3_5\Keggle\\breast-cancer-wisconsin.csv', names = column_names)
# print(data.shape) # (699,11)
data = data.replace(to_replace = '?', value = np.nan) # 原数据缺失值为?,替换为标准缺失值
data = data.dropna(how = 'any') # 将含有标准缺失值的行替换掉
print(data.shape, '\r', '-----'*15) '''训练测试数据分割'''
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(data[column_names[1:10]], data[column_names[10]],
test_size=0.25, random_state=33)
print(y_train.value_counts())
print(y_test.value_counts()) '''标准化数据并执行分类'''
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression, SGDClassifier # 方差为1,均值为0
ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test) lr = LogisticRegression()
lr.fit(X_train, y_train)
lr_y_predict = lr.predict(X_test) sgdc = SGDClassifier()
sgdc.fit(X_train, y_train)
sgdc_y_predict = sgdc.predict(X_test) '''模型测评'''
from sklearn.metrics import classification_report print('LR准确率:', lr.score(X_test, y_test))
print(classification_report(y_test, lr_y_predict, target_names=['Benign', 'Malignant']))
print('SGDC准确率:', sgdc.score(X_test, y_test))
print(classification_report(y_test, sgdc_y_predict, target_names=['Benign', 'Malignant'])) # SGDC效果浮动性很大,LR很稳定,一般情况下LR准确度更高
# recall召回率:预测为真的中真的为真的
# precision精确率:真的为真中被预测为真的
SVM
'''SVM''' '''载入数据'''
from sklearn.datasets import load_digits digits = load_digits()
print(digits.data.shape) '''训练测试数据划分'''
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.25, random_state=33)
print(y_train.shape, '\r', y_test.shape)
# print(y_test.value_counts()) 失败的原因是这是一个DataFrame方法 '''标准化&分类'''
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC # 基于线性假设的支持向量机SVC ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test) lsvc = LinearSVC()
lsvc.fit(X_train, y_train)
y_predict = lsvc.predict(X_test) '''评估模型'''
from sklearn.metrics import classification_report print('准确率:', lsvc.score(X_test, y_test))
print(classification_report(y_test, y_predict, target_names=digits.target_names.astype(str)))
朴素贝叶斯
'''朴素贝叶斯''' '''载入数据集'''
from sklearn.datasets import fetch_20newsgroups news = fetch_20newsgroups(subset='all')
print(len(news.data))
print(news.data[0]) '''划分数据集'''
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(news.data, news.target, test_size=0.25, random_state=33) '''文本数据向量化'''
# 不明白原理,需要进一步查询
from sklearn.feature_extraction.text import CountVectorizer vec = CountVectorizer()
X_train = vec.fit_transform(X_train)
X_test = vec.transform(X_test)
# print('-----'*15)
# print(X_train[0]) '''朴素贝叶斯分类器'''
from sklearn.naive_bayes import MultinomialNB mnb = MultinomialNB()
mnb.fit(X_train, y_train)
y_predict = mnb.predict(X_test) '''评估模型'''
from sklearn.metrics import classification_report print('准确率:', mnb.score(X_test, y_test))
print(classification_report(y_test, y_predict, target_names=news.target_names))
K近邻
'''K近邻''' '''数据集载入'''
from sklearn.datasets import load_iris iris = load_iris()
print(iris.data.shape)
print(iris.DESCR) '''数据集划分'''
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.25, random_state=33) '''数据集预处理(标准化)'''
from sklearn.preprocessing import StandardScaler ss = StandardScaler()
X_train = ss.fit_transform(X_train)
X_test = ss.fit_transform(X_test) '''K近邻分类'''
from sklearn.neighbors import KNeighborsClassifier knc = KNeighborsClassifier()
knc.fit(X_train, y_train)
y_predict = knc.predict(X_test) '''评估'''
from sklearn.metrics import classification_report print(knc.score(X_test, y_test))
print(classification_report(y_test, y_predict, target_names=iris.target_names))
sklearn.feature_extraction.text.CountVectorizer
建立词袋的方法,可以通过binary参数True和False表示是使用0,1还是使用出现次数记录对应单词,
print(vec.get_feature_names())
输出的是一个list,元素是很多字符串,表示特征print(X_train[0])
输出的是一个稀疏矩阵的第0行(第一个文件),形式如下,(0, 57011) 1
(0, 96571) 1
(0, 11905) 1
: :
(0, 88624) 1
(0, 54291) 1
(0, 137926) 2为了直观理解,我们这样,
print(X_train[0][0, 57011])
会输出1,所以这真的是个矩阵(废话),而且稀疏矩阵提取元素是有问题的,print(X_train[0][57011])
会报错,print(X_train[0, 57011])
就没问题,X_train.toarray()
可以转化为np数组
『Kaggle』Sklearn中几种分类器的调用&词袋建立的更多相关文章
- python:函数中五花八门的参数形式(茴香豆的『回』字有四种写法)
毫不夸张的说,python语言中关于函数参数的使用,是我见过最为灵活的,随便怎么玩都可以,本文以数学乘法为例,演示几种不同的传参形式: 一.默认参数 def multiply1(x, y): retu ...
- 『Kaggle』分类任务_决策树&集成模型&DataFrame向量化操作
决策树这节中涉及到了很多pandas中的新的函数用法等,所以我单拿出来详细的理解一下这些pandas处理过程,进一步理解pandas背后的数据处理的手段原理. 决策树程序 数据载入 pd.read_c ...
- 『转载』Matlab中fmincon函数获取乘子
Matlab中fmincon函数获取乘子 一.输出结构 [x,fval,exitflag,output,lambda] = fmincon(......) 二.结构说明 lambda结构 说 ...
- JS 中通过对象关联实现『继承』
JS 中继承其实是种委托,而不是传统面向对象中的复制父类到子类,只是通过原型链将要做的事委托给父类. 下面介绍通过对象关联来实现『继承』的方法: Foo = { // 需要提供一个 init 方法来初 ...
- 『Python题库 - 简答题』 Python中的基本概念 (121道)
## 『Python题库 - 简答题』 Python中的基本概念 1. Python和Java.PHP.C.C#.C++等其他语言的对比? 2. 简述解释型和编译型编程语言? 3. 代码中要修改不可变 ...
- 『浅入深出』MySQL 中事务的实现
在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的:在这篇文章中,我们将对事务的实现进行分析,尝 ...
- 『TensorFlow』通过代码理解gan网络_中
『cs231n』通过代码理解gan网络&tensorflow共享变量机制_上 上篇是一个尝试生成minist手写体数据的简单GAN网络,之前有介绍过,图片维度是28*28*1,生成器的上采样使 ...
- sklearn 中模型保存的两种方法
一. sklearn中提供了高效的模型持久化模块joblib,将模型保存至硬盘. from sklearn.externals import joblib #lr是一个LogisticRegressi ...
- 『TensorFlow』分类问题与两种交叉熵
关于categorical cross entropy 和 binary cross entropy的比较,差异一般体现在不同的分类(二分类.多分类等)任务目标,可以参考文章keras中两种交叉熵损失 ...
随机推荐
- python 模拟windows键盘按键的封装
代码:在执行的时候,把光标放在指定的地方,在此例中,点击运行后把光标放到结果区域,粘贴的时候是粘贴到光标所在的问题,如过是运行脚本在web元素输入框中输入的话,不能移动光标到其他位置 #encodin ...
- python写一个密码生成器的类,要求有个类变量,统计一下一共生成过多少个密码。 要求有4个方法,1:构造方法 2 实例方法 3 类方法 4 静态方法
生成指定长度的随机数字密码 生成指定长度的随机字母密码 生成指定长度的随机数字和字母的混合 #encoding=utf-8 import random import string class pa ...
- Linux基础命令---e2image
e2image e2Image程序将位于设备上的ext2.ext3或ext4文件系统元数据保存到由图像文件指定的文件中.通过对这些程序使用-i选项,image文件可以由dupe2fs和调试器来检查.这 ...
- Oracle 11g调用函数几种常用方法
1. 该函数接受3个可选参数,返回3个数字的和 CREATE OR REPLACE FUNCTION add_three_numbers ( a NUMBER:=0, b NUMBER:=0, c N ...
- 20145339顿珠 Exp5 MSF基础应用
20145339顿珠 Exp5 MS08_067漏洞测试 实验过程 IP地址:192.168.1.104 虚拟机ip:192.168.1.102 在控制台内使用search ms08_067查看相关信 ...
- IDEA中使用.ignore插件忽略不必要提交的文件
使用的IDE是IntelliJ IDEA,发现IDEA在提交项目到本地仓库的时候,会把.idea文件夹中的内容也提交上去,这里面放的是一些项目的配置信息,包括历史记录,版本控制信息等.可以不传到Git ...
- python常见模块属性与方法
sys模块的变量 变量 描述 sys.path 模块搜索路径 path[0] 是当前脚本程序的路径名,否则为 '' sys.modules 已加载模块的字典 sys.version 版本信息字符串 s ...
- 认识电脑的开机流程与主引导分区(MBR)
在前篇随笔中,已经谈到了CMOS与BIOS,CMOS是记录各项硬件参数(包括系统时间.设备的I/O地址.CPU的电压和频率等)且嵌入到主板上面的存储器,BIOS是一个写入到主板上的韧体(韧体是写入到硬 ...
- 【第八章】 springboot + mybatis + 多数据源
在实际开发中,我们一个项目可能会用到多个数据库,通常一个数据库对应一个数据源. 代码结构: 简要原理: 1)DatabaseType列出所有的数据源的key---key 2)DatabaseConte ...
- C# Byte[] 数组操作
byte[] Strbyte = Encoding.GetEncoding("big5").GetBytes(str); if (Strbyte.Length ...