Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply available. You need to determine whether it is possible to measure exactly z litres using these two jugs. If z liters of water is measurable, you must have z liters of water contained within one or both buckets by the end. Operations allowed: Fill any of the jugs completely with water.
Empty any of the jugs.
Pour water from one jug into another till the other jug is completely full or the first jug itself is empty.
Example 1: (From the famous "Die Hard" example) Input: x = 3, y = 5, z = 4
Output: True
Example 2: Input: x = 2, y = 6, z = 5
Output: False
参考:https://discuss.leetcode.com/topic/49238/math-solution-java-solution
The basic idea is to use the property of Bézout's identity and check if z is a multiple of GCD(x, y)
Quote from wiki:
Bézout's identity (also called Bézout's lemma) is a theorem in the elementary theory of numbers:
let a and b be nonzero integers and let d be their greatest common divisor. Then there exist integers x
and y such that ax+by=dIn addition, the greatest common divisor d is the smallest positive integer that can be written as ax + by
every integer of the form ax + by is a multiple of the greatest common divisor d.
If x or y is negative this means we are emptying a jug of a or b gallons respectively.
Similarly if x or y is positive this means we are filling a jug of a or b gallons respectively.
a = 4, b = 6, z = 8.
GCD(4, 6) = 2
8 is multiple of 2
so this input is valid and we have:
-1 * 4 + 6 * 2 = 8
In this case, there is a solution obtained by filling the 6 gallon jug twice and emptying the 4 gallon jug once. (Solution. Fill the 6 gallon jug and empty 4 gallons to the 4 gallon jug. Empty the 4 gallon jug. Now empty the remaining two gallons from the 6 gallon jug to the 4 gallon jug. Next refill the 6 gallon jug. This gives 8 gallons in the end)
public class Solution {
public boolean canMeasureWater(int x, int y, int z) {
if (z==x || z==y) return true; //deal with [1, 0, 0], [0, 0, 0] these true cases
if (z > x + y) return false;
return z % GCD(x, y) == 0;
}
public int GCD(int x, int y) {
while (y != 0) {
int temp = y;
y = x%y;
x = temp;
}
return x;
}
}
Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)的更多相关文章
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- 365. Water and Jug Problem (GCD or BFS) TBC
https://leetcode.com/problems/water-and-jug-problem/description/ -- 365 There are two methods to sol ...
- 【LeetCode】365. Water and Jug Problem 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学题 相似题目 参考资料 日期 题目地址:http ...
- 【leetcode】365. Water and Jug Problem
题目描述: You are given two jugs with capacities x and y litres. There is an infinite amount of water su ...
- Leetcode 365. Water and Jug Problem
可以想象有一个无限大的水罐,如果我们有两个杯子x和y,那么原来的问题等价于是否可以通过往里面注入或倒出水从而剩下z. z =? m*x + n*y 如果等式成立,那么z%gcd(x,y) == 0. ...
- [Swift]LeetCode365. 水壶问题 | Water and Jug Problem
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- 365. Water and Jug Problem量杯灌水问题
[抄题]: 简而言之:只能对 杯子中全部的水/容量-杯子中全部的水进行操作 You are given two jugs with capacities x and y litres. There i ...
- 365 Water and Jug Problem 水壶问题
有两个容量分别为 x升 和 y升 的水壶以及无限多的水.请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水.你允许: 装满任 ...
- 365. Water and Jug Problem
莫名奇妙找了个奇怪的规律. 每次用大的减小的,然后差值和小的再减,减减减减减减到差值=0为止.(较小的数 和 差值 相等为止,这么说更确切) 然后看能不能整除就行了. 有些特殊情况. 看答案是用GCD ...
随机推荐
- Natural Language Toolkit
http://www.nltk.org/ >>> import nltk >>> nltk.download()
- P1371 NOI元丹
luogu月赛的题 本来想爆搜,但是经过ly大佬的点拨,明白这是一个dp. 我们定义dp[n]为从n开始的可行串的数目,具体如下:如果n为'I',则是从n开始有多少个I,如果n为'O',既是从n开始有 ...
- Lazarus IDE的几个小技术
delphi+cnpack用惯了,转移到lazarus有点难受是不是!其实,lazaurs的编辑器也是蛮强大的,支持代码补全,自动完成,模板编辑,多行缩进注释,选定代码后批量更改里面的单词!目前,我知 ...
- delphi 高版本可执行程序减小的办法
选菜单里的 Project -> Options.. (Shift+Ctrl+F11)出现Project Options for Project1.exe窗口,在左边选 Packages出现如下 ...
- web项目中 集合Spring&使用junit4测试Spring
web项目中 集合Spring 问题: 如果将 ApplicationContext applicationContext = new ClassPathXmlApplicationContext(& ...
- Transform.InverseTransformPoint 反向变换点
JavaScript ⇒ public function InverseTransformPoint(position: Vector3): Vector3; C# ⇒public Vector3 I ...
- SQL2008全部数据导出导入两种方法【转】
方法一:生成脚本导出导入sql2008全部数据 第一步,右键要导出的数据库,任务--生成脚本 第二步,在设置脚本编写选项处,点击--高级(A),选择要编写脚本的数据的类型为:架构和数据 如果找 ...
- python 输出乱码
在Python中有两种默认的字符串:str和unicode.在Python中一定要注意区分“Unicode字符串”和“unicode对象”的区别.后面所有的“unicode字符串”指的都是python ...
- sphinx续4-coreseek的工作原理
原文地址:http://blog.itpub.net/29806344/viewspace-1399621/ 在分析sphix原理之前,我先澄清一下为什么经常出现coreseek这个词? 因为sphi ...
- gridcontrol中使用右健菜单popupMenu1
private void gridView1_ShowGridMenu(object sender, DevExpress.XtraGrid.Views.Grid.GridMenuEventArgs ...