Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply available. You need to determine whether it is possible to measure exactly z litres using these two jugs. If z liters of water is measurable, you must have z liters of water contained within one or both buckets by the end. Operations allowed: Fill any of the jugs completely with water.
Empty any of the jugs.
Pour water from one jug into another till the other jug is completely full or the first jug itself is empty.
Example 1: (From the famous "Die Hard" example) Input: x = 3, y = 5, z = 4
Output: True
Example 2: Input: x = 2, y = 6, z = 5
Output: False
参考:https://discuss.leetcode.com/topic/49238/math-solution-java-solution
The basic idea is to use the property of Bézout's identity and check if z is a multiple of GCD(x, y)
Quote from wiki:
Bézout's identity (also called Bézout's lemma) is a theorem in the elementary theory of numbers:
let a and b be nonzero integers and let d be their greatest common divisor. Then there exist integers x
and y such that ax+by=dIn addition, the greatest common divisor d is the smallest positive integer that can be written as ax + by
every integer of the form ax + by is a multiple of the greatest common divisor d.
If x or y is negative this means we are emptying a jug of a or b gallons respectively.
Similarly if x or y is positive this means we are filling a jug of a or b gallons respectively.
a = 4, b = 6, z = 8.
GCD(4, 6) = 2
8 is multiple of 2
so this input is valid and we have:
-1 * 4 + 6 * 2 = 8
In this case, there is a solution obtained by filling the 6 gallon jug twice and emptying the 4 gallon jug once. (Solution. Fill the 6 gallon jug and empty 4 gallons to the 4 gallon jug. Empty the 4 gallon jug. Now empty the remaining two gallons from the 6 gallon jug to the 4 gallon jug. Next refill the 6 gallon jug. This gives 8 gallons in the end)
public class Solution {
public boolean canMeasureWater(int x, int y, int z) {
if (z==x || z==y) return true; //deal with [1, 0, 0], [0, 0, 0] these true cases
if (z > x + y) return false;
return z % GCD(x, y) == 0;
}
public int GCD(int x, int y) {
while (y != 0) {
int temp = y;
y = x%y;
x = temp;
}
return x;
}
}
Leetcode: Water and Jug Problem && Summary: GCD求法(辗转相除法 or Euclidean algorithm)的更多相关文章
- [LeetCode] Water and Jug Problem 水罐问题
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- 365. Water and Jug Problem (GCD or BFS) TBC
https://leetcode.com/problems/water-and-jug-problem/description/ -- 365 There are two methods to sol ...
- 【LeetCode】365. Water and Jug Problem 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 数学题 相似题目 参考资料 日期 题目地址:http ...
- 【leetcode】365. Water and Jug Problem
题目描述: You are given two jugs with capacities x and y litres. There is an infinite amount of water su ...
- Leetcode 365. Water and Jug Problem
可以想象有一个无限大的水罐,如果我们有两个杯子x和y,那么原来的问题等价于是否可以通过往里面注入或倒出水从而剩下z. z =? m*x + n*y 如果等式成立,那么z%gcd(x,y) == 0. ...
- [Swift]LeetCode365. 水壶问题 | Water and Jug Problem
You are given two jugs with capacities x and y litres. There is an infinite amount of water supply a ...
- 365. Water and Jug Problem量杯灌水问题
[抄题]: 简而言之:只能对 杯子中全部的水/容量-杯子中全部的水进行操作 You are given two jugs with capacities x and y litres. There i ...
- 365 Water and Jug Problem 水壶问题
有两个容量分别为 x升 和 y升 的水壶以及无限多的水.请判断能否通过使用这两个水壶,从而可以得到恰好 z升 的水?如果可以,最后请用以上水壶中的一或两个来盛放取得的 z升 水.你允许: 装满任 ...
- 365. Water and Jug Problem
莫名奇妙找了个奇怪的规律. 每次用大的减小的,然后差值和小的再减,减减减减减减到差值=0为止.(较小的数 和 差值 相等为止,这么说更确切) 然后看能不能整除就行了. 有些特殊情况. 看答案是用GCD ...
随机推荐
- mysql安装tcmalloc
TCMalloc(Thread-Caching Malloc)是google-perftools工具中的一个,与标准的glibc库的malloc相比,TCMalloc在内存的分配上效率和速度要高得多, ...
- PHP7革新与性能优化
有幸参与2015年的PHP技术峰会(PHPCON),听了鸟哥(惠新宸)的关于PHP7的新特性和性能优化的分享,一切都令人感到激动.鸟哥是国内最权威的PHP专家,他的分享有很多非常有价值的东西,我通过整 ...
- Java单链表的实现
将结点Node进行封装,假设Node的操作有增加,删除,查找,打印几个操作.将Node实现为链表Link的内部类,简化代码. package Chapter5; import java.securit ...
- Lazarus开发平台编译后的可执行程序的减肥方法
1.在“工程”菜单下,单击“工程选项”,原始状态的界面为: 2.将界面中的两个选项修改为如下: 3.按“确定”按钮,即可 编译以后的可执行程序就将又原来的14m变为1.66m. 1.选择: Proje ...
- 二 mybatis 动态sql
动态sql应用 一 .什么是动态sql 1.where条件 动态查询 根据姓名或年龄或地址查询 UserMapper.xml 1 <select id="findUser" ...
- php session 跨页失效问题
原因是session.savepath 目录不存在或者没有读写权限
- phpstorm9 无法输入中文逗号句号等符号了,怎么破?
最近手贱把phpstorm 升级到了最新版,发现输入中文符号输入不了呀,全部都变成英文符号了,例如输入的逗号.句号(,.)等都被转换成了(,.) 经过各方搜索,这个在官方也说了,是个bug,JDK的b ...
- php数据访问:pdo用法、事物回滚功能和放sql注入功能
PDO: 一.含义: 数据访问抽象层 二.作用 通过PDO能够访问其它的数据库 三. 用法: 1.造对象 ① $pdo ...
- 后半部分样式和JS前半部分脚本语言
样式 剩余样式: 1.<div style=display:"none"></div>:nono 是隐藏该元素内容,block是显示该元素内容 2.< ...
- 蓝牙4.0(包含BLE)简介
1. BLE (低功耗蓝牙)简介 国际蓝牙联盟( BT-SIG,TI 是 企业成员之一)通过的一个标准蓝牙无线协议. 主要的新特性是在蓝牙标准版本上添加了4.0 蓝牙规范 (2010 年6 月 ...