【USACO】beads
题目:
You have a necklace of N red, white, or blue beads (3<=N<=350) some of which are red, others blue, and others white, arranged at random. Here are two examples for n=29:
1 2 1 2
r b b r b r r b
r b b b
r r b r
r r w r
b r w w
b b r r
b b b b
b b r b
r r b r
b r r r
b r r r
r r r b
r b r r r w
Figure A Figure B
r red bead
b blue bead
w white bead
The beads considered first and second in the text that follows have been marked in the picture.
The configuration in Figure A may be represented as a string of b's and r's, where b represents a blue bead and r represents a red one, as follows: brbrrrbbbrrrrrbrrbbrbbbbrrrrb .
Suppose you are to break the necklace at some point, lay it out straight, and then collect beads of the same color from one end until you reach a bead of a different color, and do the same for the other end (which might not be of the same color as the beads collected before this).
Determine the point where the necklace should be broken so that the most number of beads can be collected.
Example
For example, for the necklace in Figure A, 8 beads can be collected, with the breaking point either between bead 9 and bead 10 or else between bead 24 and bead 25.
In some necklaces, white beads had been included as shown in Figure B above. When collecting beads, a white bead that is encountered may be treated as either red or blue and then painted with the desired color. The string that represents this configuration can include any of the three symbols r, b and w.
Write a program to determine the largest number of beads that can be collected from a supplied necklace.
这一道题做了一整天,更郁闷的是对完答案发现自己的方法太复杂了
我总是想着先把整个项链都染色成 red 或 blue 然后把每一段的相同颜色串的数量数出来 实际上可以每次只考虑一个缺口位置的局部信息就好了 不需要提前染色 也不需要将整个项链的所有相同颜色玻璃串的个数存起来 因为存起来后 对于rwb bwr的情况还是要单独分析
用到了一些小技巧:
1.环装一定会用到mod 不过一般都是数字超过了范围用模电 这个项链可能数到-1 、-2 需要自己定义一个新的有负数的mod 或者 把信息存储两遍这样 可以在第一遍存储的最后可以直接通过加法读取下一个存储的起始的玻璃珠信息
答案:思路最清楚的代码
#include <stdio.h>
#include <string.h>
#include <assert.h> #define MAXN 400 char necklace[MAXN];
int len; /*
* Return n mod m. The C % operator is not enough because
* its behavior is undefined on negative numbers.
*/
int
mod(int n, int m)
{
while(n < )
n += m;
return n%m;
} /*
* Calculate number of beads gotten by breaking
* before character p and going in direction dir,
* which is 1 for forward and -1 for backward.
*/
int
nbreak(int p, int dir)
{
char color;
int i, n; color = 'w'; /* Start at p if going forward, bead before if going backward */
if(dir > )
i = p;
else
i = mod(p-, len); /* We use "n<len" to cut off loops that go around the whole necklace */
for(n=; n<len; n++, i=mod(i+dir, len)) {
/* record which color we're going to collect */
if(color == 'w' && necklace[i] != 'w')
color = necklace[i]; /*
* If we've chosen a color and see a bead
* not white and not that color, stop
*/
if(color != 'w' && necklace[i] != 'w' && necklace[i] != color)
break;
}
return n;
} void
main(void)
{
FILE *fin, *fout;
int i, n, m; fin = fopen("beads.in", "r");
fout = fopen("beads.out", "w");
assert(fin != NULL && fout != NULL); fscanf(fin, "%d %s", &len, necklace);
assert(strlen(necklace) == len); m = ;
for(i=; i<len; i++) {
n = nbreak(i, ) + nbreak(i, -);
if(n > m)
m = n;
} /*
* If the whole necklace can be gotten with a good
* break, we'll sometimes count beads more than
* once. this can only happen when the whole necklace
* can be taken, when beads that can be grabbed from
* the right of the break can also be grabbed from the left.
*/
if(m > len)
m = len; fprintf(fout, "%d\n", m);
exit ();
}
动态规划的答案我没怎么看还:
#include <stdio.h>
#include <string.h>
#include <algorithm> using namespace std; FILE *in,*out; int main () {
in = fopen("beads.in", "r");
out = fopen ("beads.out", "w"); int n;
char tmp[], s[];
fscanf(in, "%d %s", &n, tmp); strcpy(s, tmp);
strcat(s, tmp); int left[][], right[][];
left[][] = left[][] = ; for (int i=; i<= * n; i++){
if (s[i - ] == 'r'){
left[i][] = left[i - ][] + ;
left[i][] = ;
} else if (s[i - ] == 'b'){
left[i][] = left[i - ][] + ;
left[i][] = ;
} else {
left[i][] = left[i - ][] + ;
left[i][] = left[i - ][] + ;
}
} right[ * n][] = right[ * n][] = ;
for (int i= * n - ; i >= ; i--){
if (s[i] == 'r'){
right[i][] = right[i + ][] + ;
right[i][] = ;
} else if (s[i] == 'b'){
right[i][] = right[i + ][] + ;
right[i][] = ;
} else {
right[i][] = right[i + ][] + ;
right[i][] = right[i + ][] + ;
}
} int m = ;
for (int i=; i< * n; i++)
m = max(m, max(left[i][], left[i][]) + max(right[i][], right[i][]));
m = min(m, n);
fprintf(out, "%d\n", m);
fclose(in); fclose(out);
return ;
}
简便的方案:
#include <iostream>
#include <fstream>
using namespace std; int main() {
fstream input, output;
string inputFilename = "beads.in", outputFilename = "beads.out";
input.open(inputFilename.c_str(), ios::in);
output.open(outputFilename.c_str(), ios::out); int n, max=, current, state, i, j;
string s;
char c; input >> n >> s;
s = s+s;
for(i=; i<n; i++) {
c = (char) s[i];
if(c == 'w')
state = ;
else
state = ;
j = i;
current = ;
while(state <= ) {
// dont go further in second string than starting position in first string
while(j<n+i && (s[j] == c || s[j] == 'w')) {
current++;
j++;
} // while
state++;
c = s[j];
} // while
if(current > max)
max = current;
} // for output << max << endl;
return ;
} // main
我自己写的非常复杂 但至少还对了的代码:
#include<stdio.h>
#include<string.h>
#include<assert.h> #define MaxLength 350
typedef struct{
int color;
int num;
int type;
} Pos; typedef struct {
int colorleft;
int colorright;
int location;
int length;
}RWB; typedef struct {
int num;
int type;
}NUM;
enum Type{left, right}; int main()
{
FILE *in, *out;
int num, longgest = ;
int countr = , countb = ;
int tmp;
int length = ;
int recordnum = , recorddnum = ;
int i = , j;
int first = -; //最小的记录点
char necklace[]; in = fopen("beads.in", "r");
out = fopen("beads.out", "w"); fscanf(in, "%d", &length);
fscanf(in, "%s", necklace); while(i < length) //得到项链长度
{
if(necklace[i] == 'r')
countr++;
else if(necklace[i] == 'b')
countb++;
i++;
} if(countr == || countb == )
{
fprintf(out ,"%d\n", length);
return ;
} Pos record[MaxLength];
RWB recordd[MaxLength];
i = ;
while(i < length) //定位第一个left
{
if(necklace[i] != 'w' && necklace[i+] == 'w')
{
first = i;
record[].color = necklace[i];
record[].num = i;
record[].type = left;
recordnum++;
break;
}
i++;
} if(first != -)
{
for(i = first + ; i != first; i = (i + ) % length) //记录 bw wb rw wr的位置
{
if(necklace[i] != 'w' && necklace[(i+)%length] == 'w')
{
record[recordnum].color = necklace[i];
record[recordnum].num = i;
record[recordnum].type = left;
recordnum++;
}
else if(necklace[i] == 'w' && necklace[(i+)%length] != 'w')
{
record[recordnum].color = necklace[(i+)%length];
record[recordnum].num = (i+)%length;
record[recordnum].type = right;
recordnum++;
}
} assert(recordnum % == );
assert(record[recordnum-].type == right); for(i = ; i < recordnum; i = i + ) //根据记录信息 将 rw...wr 和 bw...wb的直接染色 将 rw..wb bw..wr的取出
{
assert((record[i].type == left && record[i+].type == right));
if(record[i].color == record[i+].color)
{
for(j = (record[i].num + )%length; j != record[i+].num; j = (j + ) % length)
{
necklace[j] = record[i].color;
} }
else
{
recordd[recorddnum].colorleft = record[i].color;
recordd[recorddnum].colorright = record[i+].color;
recordd[recorddnum].length = record[i+].num - record[i].num - ;
recordd[recorddnum].location = record[i].num;
recorddnum++;
}
}
} //fprintf(out,"%s",necklace); NUM record2[MaxLength];
int record2num = ;
int numtmp = ;
for(i = ; i < length; i++) //统计项链相同颜色的个数 存放在数组中
{
if(necklace[i] == necklace[i+] )
{
numtmp++;
}
else
{
record2[record2num].num = numtmp;
if(necklace[i] == 'w')
record2[record2num].type = ;
else
record2[record2num].type = ;
numtmp = ;
record2num++;
}
}
if(necklace[] == necklace[length - ]) //处理最后颜色与第一个颜色相同
{
record2num--;
record2[].num += record2[record2num].num;
}
for(i = ; i < record2num; i++)
{
record2[record2num + i] = record2[i];
} int longgesttmp = ;
int n;
for(i = ; i < record2num ;i++) //根据存储的数组找最长链
{
n = ;
j = i;
longgesttmp = ;
while()
{
if(record2[j].type == )
n++;
if(n == && j % record2num == i && record2[j].type == )
break;
if(n<)
longgesttmp += record2[j].num;
else
break;
j++;
}
if(longgesttmp > longgest)
{
longgest = longgesttmp;
}
} fprintf(out , "%d\n", longgest); return ;
}
【USACO】beads的更多相关文章
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- 1642: 【USACO】Payback(还债)
1642: [USACO]Payback(还债) 时间限制: 1 Sec 内存限制: 64 MB 提交: 190 解决: 95 [提交] [状态] [讨论版] [命题人:外部导入] 题目描述 &quo ...
- 1519: 【USACO】超级书架
1519: [USACO]超级书架 时间限制: 1 Sec 内存限制: 64 MB 提交: 1735 解决: 891 [提交] [状态] [讨论版] [命题人:外部导入] 题目描述 Farmer Jo ...
- Java实现【USACO】1.1.2 贪婪的礼物送礼者 Greedy Gift Givers
[USACO]1.1.2 贪婪的礼物送礼者 Greedy Gift Givers 题目描述 对于一群要互送礼物的朋友,你要确定每个人送出的礼物比收到的多多少(and vice versa for th ...
- 【CPLUSOJ】【USACO】【差分约束】排队(layout)
[题目描述] Robin喜欢将他的奶牛们排成一队.假设他有N头奶牛,编号为1至N.这些奶牛按照编号大小排列,并且由于它们都很想早点吃饭,于是就很可能出现多头奶牛挤在同一位置的情况(也就是说,如果我们认 ...
- 【USACO】Dining
[题目链接] [JZXX]点击打开链接 [caioj]点击打开链接 [算法] 拆点+网络流 [代码] #include<bits/stdc++.h> using namespace std ...
- 【USACO】Optimal Milking
题目链接 : [POJ]点击打开链接 [caioj]点击打开链接 算法 : 1:跑一遍弗洛伊德,求出点与点之间的最短路径 2:二分答案,二分”最大值最小“ 3.1:建边,将 ...
- 【USACO】 Balanced Photo
[题目链接] 点击打开链接 [算法] 树状数组 [代码] #include<bits/stdc++.h> using namespace std; int i,N,ans,l1,l2; ] ...
- 【USACO】 Balanced Lineup
[题目链接] 点击打开链接 [算法] 这是一道经典的最值查询(RMQ)问题. 我们首先想到线段树.但有没有更快的方法呢?对于这类问题,我们可以用ST表(稀疏表)算法求解. 稀疏表算法.其实也是一种动态 ...
随机推荐
- bzoj 1193 贪心
如果两点的曼哈顿距离在一定范围内时我们直接暴力搜索就可以得到答案,那么开始贪心的跳,判断两点横纵坐标的差值,差值大的方向条2,小的条1,不断做,直到曼哈顿距离较小时可以暴力求解. 备注:开始想的是确定 ...
- bzoj3037 创世纪
两种解法: 一.树状DP /*by SilverN*/ #include<iostream> #include<algorithm> #include<cstring&g ...
- 栈的的链式实例LinkStack实现
1.#include <stdio.h>#include <malloc.h>#include "LinkList.h"typedef struct _ta ...
- while练习:输入一个班级的人数,然后依次输入学员成绩,计算班级学员的平均成绩和总成绩。
Console.WriteLine("请输入班级的总人数:"); int count = int.Parse(Console.ReadLine()); ;//声明一个循环变量来记录 ...
- git小结
1.创建本地与远程分支 先创建远程分支,再创建本地分支,再将本地分支与远程分支关联git fetch 获取远程分支git checkout remote_branch 或者 git checkout ...
- 使用注解实现IOC
在biz业务处理类实现类中 /** * 用户业务类,实现对User功能的业务管理 */ @Service("userBiz") public class UserBiz imple ...
- tcpdump wireshark 实用过滤表达式(针对ip、协议、端口、长度和内容) 实例介绍
tcpdump wireshark 实用过滤表达式(针对ip.协议.端口.长度和内容) 实例介绍 标签: 网络tcpdst工具windowslinux 2012-05-15 18:12 3777人阅读 ...
- C++中析构函数的作用,
如果构造函数打开了一个文件,最后不需要使用时文件就要被关闭.析构函数允许类自动完成类似清理工作,不必调用其他成员函数.析构函数也是特殊的类成员函数.简单来说,析构函数与构造函数的作用正好相反,它用来完 ...
- You should blog even if you have no readers
Spencer Fry wrote a great post on "Why entrepreneurs should write." I would further add th ...
- 【原创】express3.4.8源码解析之路由中间件
前言 注意:旧文章转成markdown格式. 跟大家聊一个中间件,叫做路由中间件,它并非是connect中内置的中间件,而是在express中集成进去的. 显而易见,该中间件的用途就是 ------ ...