http://poj.org/problem?id=1113

答案是凸包周长+半径为l的圆的周长...

证明?这是个坑..

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=2005;
struct Pt { int x, y; };
int Cross(Pt &a, Pt &b, Pt &c) {
static int x1, x2, y1, y2;
x1=a.x-c.x; y1=a.y-c.y;
x2=b.x-c.x; y2=b.y-c.y;
return x1*y2-x2*y1;
}
int sqr(int x) { return x*x; }
double dis(Pt &a, Pt &b) { return sqrt(sqr(a.x-b.x)+sqr(a.y-b.y)); }
bool cmp(const Pt &a, const Pt &b) { return a.x==b.x?a.y<b.y:a.x<b.x; }
void tu(Pt *p, Pt *s, int n, int &cnt) {
sort(p, p+n, cmp);
cnt=-1;
rep(i, n) {
while(cnt>0 && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
s[++cnt]=p[i];
}
int k=cnt;
for3(i, n-2, 0) {
while(cnt>k && Cross(p[i], s[cnt], s[cnt-1])>=0) --cnt;
s[++cnt]=p[i];
}
if(n>1) --cnt;
++cnt;
} int n, m, l;
Pt a[N], b[N];
int main() {
read(n); read(l);
rep(i, n) read(a[i].x), read(a[i].y);
tu(a, b, n, m);
b[m]=b[0];
double ans=2*l*acos(-1);
rep(i, m) ans+=dis(b[i], b[i+1]);
printf("%.0f\n", ans);
return 0;
}

  


Description

Once upon a time there was a greedy King who ordered his chief Architect to build a wall around the King's castle. The King was so greedy, that he would not listen to his Architect's proposals to build a beautiful brick wall with a perfect shape and nice tall towers. Instead, he ordered to build the wall around the whole castle using the least amount of stone and labor, but demanded that the wall should not come closer to the castle than a certain distance. If the King finds that the Architect has used more resources to build the wall than it was absolutely necessary to satisfy those requirements, then the Architect will loose his head. Moreover, he demanded Architect to introduce at once a plan of the wall listing the exact amount of resources that are needed to build the wall. 

Your task is to help poor Architect to save his head, by writing a program that will find the minimum possible length of the wall that he could build around the castle to satisfy King's requirements.

The task is somewhat simplified by the fact, that the King's castle has a polygonal shape and is situated on a flat ground. The Architect has already established a Cartesian coordinate system and has precisely measured the coordinates of all castle's vertices in feet.

Input

The first line of the input file contains two integer numbers N and L separated by a space. N (3 <= N <= 1000) is the number of vertices in the King's castle, and L (1 <= L <= 1000) is the minimal number of feet that King allows for the wall to come close to the castle.

Next N lines describe coordinates of castle's vertices in a clockwise order. Each line contains two integer numbers Xi and Yi separated by a space (-10000 <= Xi, Yi <= 10000) that represent the coordinates of ith vertex. All vertices are different and the sides of the castle do not intersect anywhere except for vertices.

Output

Write to the output file the single number that represents the minimal possible length of the wall in feet that could be built around the castle to satisfy King's requirements. You must present the integer number of feet to the King, because the floating numbers are not invented yet. However, you must round the result in such a way, that it is accurate to 8 inches (1 foot is equal to 12 inches), since the King will not tolerate larger error in the estimates.

Sample Input

9 100
200 400
300 400
300 300
400 300
400 400
500 400
500 200
350 200
200 200

Sample Output

1628

Hint

结果四舍五入就可以了

Source

【POJ】1113 Wall(凸包)的更多相关文章

  1. POJ 1113 Wall 凸包 裸

    LINK 题意:给出一个简单几何,问与其边距离长为L的几何图形的周长. 思路:求一个几何图形的最小外接几何,就是求凸包,距离为L相当于再多增加上一个圆的周长(因为只有四个角).看了黑书使用graham ...

  2. poj 1113 Wall 凸包的应用

    题目链接:poj 1113   单调链凸包小结 题解:本题用到的依然是凸包来求,最短的周长,只是多加了一个圆的长度而已,套用模板,就能搞定: AC代码: #include<iostream> ...

  3. POJ 1113 Wall 凸包求周长

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 26286   Accepted: 8760 Description ...

  4. POJ 1113 - Wall 凸包

    此题为凸包问题模板题,题目中所给点均为整点,考虑到数据范围问题求norm()时先转换成double了,把norm()那句改成<vector>压栈即可求得凸包. 初次提交被坑得很惨,在GDB ...

  5. poj 1113 wall(凸包裸题)(记住求线段距离的时候是点积,点积是cos)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 43274   Accepted: 14716 Descriptio ...

  6. POJ 1113 Wall【凸包周长】

    题目: http://poj.org/problem?id=1113 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  7. poj 1113:Wall(计算几何,求凸包周长)

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 28462   Accepted: 9498 Description ...

  8. POJ 1113 Wall(凸包)

    [题目链接] http://poj.org/problem?id=1113 [题目大意] 给出一个城堡,要求求出距城堡距离大于L的地方建围墙将城堡围起来求所要围墙的长度 [题解] 画图易得答案为凸包的 ...

  9. POJ 1113 Wall 求凸包

    http://poj.org/problem?id=1113 不多说...凸包网上解法很多,这个是用graham的极角排序,也就是算导上的那个解法 其实其他方法随便乱搞都行...我只是测一下模板... ...

  10. POJ 1113 Wall 求凸包的两种方法

    Wall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31199   Accepted: 10521 Descriptio ...

随机推荐

  1. C/C++ 文件操作

    C/C++ 文件操作大概有以下几种 1.C的文件操作: 2.C++的文件操作: 3.WINAPI的文件操作: 4.BCB库的文件操作: 5.特殊文件的操作. 当然了,水题时最常用的当然还是: freo ...

  2. HDU 1231 最大连续子序列 &&HDU 1003Max Sum (区间dp问题)

    C - 最大连续子序列 Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit ...

  3. 【转】基于LDA的Topic Model变形

    转载自wentingtu 基于LDA的Topic Model变形最近几年来,随着LDA的产生和发展,涌现出了一批搞Topic Model的牛人.我主要关注了下面这位大牛和他的学生:David M. B ...

  4. k Sum | & ||

    k Sum Given n distinct positive integers, integer k (k <= n) and a number target. Find k numbers ...

  5. 【转】ByteArrayOutputStream和ByteArrayInputStream详解

    ByteArrayOutputStream类是在创建它的实例时,程序内部创建一个byte型别数组的缓冲区,然后利用ByteArrayOutputStream和ByteArrayInputStream的 ...

  6. 【转】PowerDesigner使用方法小结

    本文转自:http://www.cnblogs.com/afarmer/archive/2012/11/05/2755327.html PowerDesigner多用来进行数据库模型设计,具有SQL语 ...

  7. LLVM,Clang

    在使用xcode时常常会遇到这2个概念,今天总结一下. wiki中关于llvm的描述: LLVM提供了完整編譯系統的中間層,它會將中間語言(IF, Intermediate form)從編譯器取出與最 ...

  8. (转)SQL Server 的事务和锁(一)

    SQL Server 的事务和锁(一)   最近在项目中进行压力测试遇到了数据库的死锁问题,简言之,如下的代码在 SERIALIZABLE 隔离级别造成了死锁: 1 2 3 4 5 6 7 8 9 1 ...

  9. Windows 8操作技巧之快捷键大全

    Windows 8操作系统发布之后,因为其新颖的界面和对触屏友好的设计,使许多长期使用Windows系统的用户,也觉得一时难以适应,一些操作方式也不知道如何去实现.在Windows系统中,快捷键无疑是 ...

  10. protostuff简单应用

    protobuf是谷歌推出的与语言无关.平台无关的通信协议,一个对象经过protobuf序列化后将变成二进制格式的数据,所以他可读性差,但换来的是占用空间小,速度快.居网友测试,它的序列化效率是xml ...