将序列分成$\sqrt{n}$块,预处理出每两块之间的逆序对数,以及ap[i]表示前i块内数字出现次数的树状数组

预处理:$O(n\sqrt{n}\log n)$

修改时,ap[i]可以在$O(\sqrt{n}\log n)$复杂度内完成修改,然后考虑修改的位置对答案的贡献,可以发现相当于某一行、某一列都加上一个数,对于行列各开$\sqrt{n}$棵树状数组差分维护

修改:$O(\sqrt{n}\log n)$

查询时中间那块可以通过树状数组$O(\log n)$求出,然后向两边暴力扩展

查询:$O(\sqrt{n}\log n)$

#include<cstdio>
const int N=50010,K=230;
int n,m,op,l,r,i,j,k,size,block,a[N],pos[N],st[K],en[K],ans[K][K],T,x,y,z,now,all,last,tmp[K][2],ap[K][N],tag[2][K][K],bit[N],vis[N];
inline void read(int&a){char ch;while(!(((ch=getchar())>='0')&&(ch<='9')));a=ch-'0';while(((ch=getchar())>='0')&&(ch<='9'))(a*=10)+=ch-'0';}
inline void add(int x){for(;x<=n;x+=x&-x)if(vis[x]!=T)vis[x]=T,bit[x]=1;else bit[x]++;}
inline int sum(int x){int t=0;for(;x;x-=x&-x)if(vis[x]==T)t+=bit[x];return t;}
inline void add(int p,int x,int y){for(;x<=n;x+=x&-x)ap[p][x]+=y;}
inline int sum(int p,int x){if(!p)return 0;int t=0;for(;x;x-=x&-x)t+=ap[p][x];return t;}
inline void add(int w,int p,int x,int y){for(;x<=block;x+=x&-x)tag[w][p][x]+=y;}
inline int sum(int w,int p,int x){int t=0;for(;x;x-=x&-x)t+=tag[w][p][x];return t;}
inline void change(int x,int y){
z=a[x];
for(i=k=pos[x];i<=block;i++)add(i,z,-1),add(i,y,1);
now=sum(k-1,z)-sum(k-1,y)+sum(k,z-1)-sum(k,y-1);
for(i=st[k];i<x;i++){
if(a[i]>z)now--;
if(a[i]>y)now++;
}
for(i=en[k];i>x;i--){
if(a[i]<z)now--;
if(a[i]<y)now++;
}
for(i=1;i<=block;i++)tmp[i][0]=sum(i-1,y)-sum(i-1,z),tmp[i][1]=sum(i,y-1)-sum(i,z-1);
for(i=k;i;i--)add(0,i,k,now+tmp[i][0]);
for(i=k;i<=block;i++)add(1,i,1,tmp[i][1]),add(1,i,k+1,-tmp[i][1]);
a[x]=y;
}
inline int ask(int l,int r){
T++,x=pos[l],y=pos[r];
if(x==y){
now=0;
for(;r>=l;r--)now+=sum(a[r]-1),add(a[r]);
return now;
}
now=ans[x+1][y-1]+sum(0,x+1,y-1)+sum(1,y-1,x+1),all=st[y]-en[x]-1;
for(i=st[y];i<=r;i++)now+=all-sum(a[i])-sum(y-1,a[i])+sum(x,a[i]),add(a[i]),all++;
for(i=en[x];i>=l;i--)now+=sum(a[i]-1)+sum(y-1,a[i]-1)-sum(x,a[i]-1),add(a[i]);
return now;
}
int main(){
read(n);
for(i=1;i<=n;i++)read(a[i]);
for(;size*size<n;size++);
for(i=1;i<=n;i++)pos[i]=(i-1)/size+1;
for(block=pos[n],i=1;i<=block;i++)st[i]=size*(i-1)+1;
for(en[block]=n,i=block-1;i;i--)en[i]=st[i+1]-1;
for(i=1;i<=block;i++){
now=all=0,T++;
for(j=1;j<=n;j++)ap[i][j]=ap[i-1][j];
for(j=st[i];j<=en[i];j++)add(i,a[j],1);
for(j=i;j<=block;ans[i][j++]=now)for(k=st[j];k<=en[j];k++)now+=all-sum(a[k]),add(a[k]),all++;
}
read(m);
while(m--){
read(op),read(l),read(r),l^=last,r^=last;
if(!op)printf("%d\n",last=ask(l,r));else change(l,r);
}
return 0;
}

  

BZOJ3787 : Gty的文艺妹子序列的更多相关文章

  1. BZOJ3787:Gty的文艺妹子序列(分块,树状数组)

    Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...

  2. BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】

    题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...

  3. 【分块】【树状数组】bzoj3787 Gty的文艺妹子序列

    题解懒得自己写了,Orz一发wangxz神犇的: http://bakser.gitcafe.com/2014/12/04/bzoj3787-Gty%E7%9A%84%E6%96%87%E8%89%B ...

  4. BZOJ 3787: Gty的文艺妹子序列

    3787: Gty的文艺妹子序列 Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 186  Solved: 58[Submit][Status][Dis ...

  5. BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]

    传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...

  6. BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)

    题意 给出n个数,要求支持单点修改和区间逆序对,强制在线. n,m<=50000 题解 和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表 ...

  7. BZOJ 3809: Gty的二逼妹子序列

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1387  Solved: 400[Submit][Status][Di ...

  8. 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法

    3809: Gty的二逼妹子序列 Time Limit: 80 Sec  Memory Limit: 28 MBSubmit: 1072  Solved: 292[Submit][Status][Di ...

  9. BZOJ3809: Gty的二逼妹子序列

    Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题.   对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数.   为了方 ...

随机推荐

  1. [Unity3D]图形渲染优化、渲染管线优化、图形性能优化

    原地址:http://blog.sina.com.cn/s/blog_5b6cb9500101dmh0.html 转载请留下本文原始链接,谢谢.本文会不定期更新维护,最近更新于2013.11.09   ...

  2. @version ||= version

    # -*- encoding : utf-8 -*- class InterfaceBaseController < ActionController::Base private def set ...

  3. 《OpenCV入门》(三)

    这部分主要讲形态学的,回头把代码跑跑再来说下代码的感受:http://blog.csdn.net/poem_qianmo/article/details/24599073

  4. Python Django 的 django templatedoesnotexist

    django 1.8版本的解决方案 在  setting.py 这个文件里 TEMPLATES = [ ...... #原来的 #'DIRS': [ ], //  这个 列表里添加 template路 ...

  5. Android程序启动加载动画实现

    package com.example.bmob_test.ui;//程序启动动画,图片颜色由浅到深,方法一 import com.example.bmob_test.LogActivity; imp ...

  6. JSoup——用Java解析html网页内容

    当需要从网页上获取信息时,需要解析html页面.筛选指定标签,并获取其值是必不可少的操作,解析html页面这方面的利器,Python有BeautifulSoup,Java一直没有好的工具,之前的Htm ...

  7. github student pack中的digital ocean可以使用银联卡支付

    申请了 github student pack却因为一直没有visita信用卡,而无法使用digital ocean的 $50,一直到今天,用中国银行借记卡成功支付. 方法是: (1)注册paypal ...

  8. 修改setup.py的源

    方法一: 修改文件 ~/.pydistutils.cfg为: [easy_install] index_url = http://pypi.douban.com/simple 方法二: 直接在setu ...

  9. svn 设置

    \Release *\Debug *\bin *\Bin *\obj *\_ReSharper* *\.hg *.ReSharper *.resharper *\Generated_Code *\VB ...

  10. Java for LeetCode 153 Find Minimum in Rotated Sorted Array

    Suppose a sorted array is rotated at some pivot unknown to you beforehand. (i.e., 0 1 2 4 5 6 7 migh ...