BZOJ3787 : Gty的文艺妹子序列
将序列分成$\sqrt{n}$块,预处理出每两块之间的逆序对数,以及ap[i]表示前i块内数字出现次数的树状数组
预处理:$O(n\sqrt{n}\log n)$
修改时,ap[i]可以在$O(\sqrt{n}\log n)$复杂度内完成修改,然后考虑修改的位置对答案的贡献,可以发现相当于某一行、某一列都加上一个数,对于行列各开$\sqrt{n}$棵树状数组差分维护
修改:$O(\sqrt{n}\log n)$
查询时中间那块可以通过树状数组$O(\log n)$求出,然后向两边暴力扩展
查询:$O(\sqrt{n}\log n)$
#include<cstdio>
const int N=50010,K=230;
int n,m,op,l,r,i,j,k,size,block,a[N],pos[N],st[K],en[K],ans[K][K],T,x,y,z,now,all,last,tmp[K][2],ap[K][N],tag[2][K][K],bit[N],vis[N];
inline void read(int&a){char ch;while(!(((ch=getchar())>='0')&&(ch<='9')));a=ch-'0';while(((ch=getchar())>='0')&&(ch<='9'))(a*=10)+=ch-'0';}
inline void add(int x){for(;x<=n;x+=x&-x)if(vis[x]!=T)vis[x]=T,bit[x]=1;else bit[x]++;}
inline int sum(int x){int t=0;for(;x;x-=x&-x)if(vis[x]==T)t+=bit[x];return t;}
inline void add(int p,int x,int y){for(;x<=n;x+=x&-x)ap[p][x]+=y;}
inline int sum(int p,int x){if(!p)return 0;int t=0;for(;x;x-=x&-x)t+=ap[p][x];return t;}
inline void add(int w,int p,int x,int y){for(;x<=block;x+=x&-x)tag[w][p][x]+=y;}
inline int sum(int w,int p,int x){int t=0;for(;x;x-=x&-x)t+=tag[w][p][x];return t;}
inline void change(int x,int y){
z=a[x];
for(i=k=pos[x];i<=block;i++)add(i,z,-1),add(i,y,1);
now=sum(k-1,z)-sum(k-1,y)+sum(k,z-1)-sum(k,y-1);
for(i=st[k];i<x;i++){
if(a[i]>z)now--;
if(a[i]>y)now++;
}
for(i=en[k];i>x;i--){
if(a[i]<z)now--;
if(a[i]<y)now++;
}
for(i=1;i<=block;i++)tmp[i][0]=sum(i-1,y)-sum(i-1,z),tmp[i][1]=sum(i,y-1)-sum(i,z-1);
for(i=k;i;i--)add(0,i,k,now+tmp[i][0]);
for(i=k;i<=block;i++)add(1,i,1,tmp[i][1]),add(1,i,k+1,-tmp[i][1]);
a[x]=y;
}
inline int ask(int l,int r){
T++,x=pos[l],y=pos[r];
if(x==y){
now=0;
for(;r>=l;r--)now+=sum(a[r]-1),add(a[r]);
return now;
}
now=ans[x+1][y-1]+sum(0,x+1,y-1)+sum(1,y-1,x+1),all=st[y]-en[x]-1;
for(i=st[y];i<=r;i++)now+=all-sum(a[i])-sum(y-1,a[i])+sum(x,a[i]),add(a[i]),all++;
for(i=en[x];i>=l;i--)now+=sum(a[i]-1)+sum(y-1,a[i]-1)-sum(x,a[i]-1),add(a[i]);
return now;
}
int main(){
read(n);
for(i=1;i<=n;i++)read(a[i]);
for(;size*size<n;size++);
for(i=1;i<=n;i++)pos[i]=(i-1)/size+1;
for(block=pos[n],i=1;i<=block;i++)st[i]=size*(i-1)+1;
for(en[block]=n,i=block-1;i;i--)en[i]=st[i+1]-1;
for(i=1;i<=block;i++){
now=all=0,T++;
for(j=1;j<=n;j++)ap[i][j]=ap[i-1][j];
for(j=st[i];j<=en[i];j++)add(i,a[j],1);
for(j=i;j<=block;ans[i][j++]=now)for(k=st[j];k<=en[j];k++)now+=all-sum(a[k]),add(a[k]),all++;
}
read(m);
while(m--){
read(op),read(l),read(r),l^=last,r^=last;
if(!op)printf("%d\n",last=ask(l,r));else change(l,r);
}
return 0;
}
BZOJ3787 : Gty的文艺妹子序列的更多相关文章
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- BZOJ3787 gty的文艺妹子序列 【树状数组】【分块】
题目分析: 首先这种乱七八糟的题目就分块.然后考虑逆序对的统计. 一是块内的,二是块之间的,三是一个块内一个块外,四是都在块外. 令分块大小为$S$. 块内的容易维护,单次维护时间是$O(S)$. 块 ...
- 【分块】【树状数组】bzoj3787 Gty的文艺妹子序列
题解懒得自己写了,Orz一发wangxz神犇的: http://bakser.gitcafe.com/2014/12/04/bzoj3787-Gty%E7%9A%84%E6%96%87%E8%89%B ...
- BZOJ 3787: Gty的文艺妹子序列
3787: Gty的文艺妹子序列 Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 186 Solved: 58[Submit][Status][Dis ...
- BZOJ 3787: Gty的文艺妹子序列 [分块 树状数组!]
传送门 题意:单点修改,询问区间内逆序对数,强制在线 看到加了!就说明花了不少时间.... 如果和上题一样预处理信息,用$f[i][j]$表示块i到j的逆序对数 强行修改的话,每个修改最多会修改$(\ ...
- BZOJ 3787 Gty的文艺妹子序列(分块+树状数组+前缀和)
题意 给出n个数,要求支持单点修改和区间逆序对,强制在线. n,m<=50000 题解 和不带修改差不多,预处理出smaller[i][j]代表前i块小于j的数的数量,但不能用f[i][j]代表 ...
- BZOJ 3809: Gty的二逼妹子序列
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1387 Solved: 400[Submit][Status][Di ...
- 【BZOJ-3809】Gty的二逼妹子序列 分块 + 莫队算法
3809: Gty的二逼妹子序列 Time Limit: 80 Sec Memory Limit: 28 MBSubmit: 1072 Solved: 292[Submit][Status][Di ...
- BZOJ3809: Gty的二逼妹子序列
Description Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题. 对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数. 为了方 ...
随机推荐
- hiho一下 第九十五周 数论四·扩展欧几里德
题目 : 数论四·扩展欧几里德 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和小Ho周末在公园溜达.公园有一堆围成环形的石板,小Hi和小Ho分别站在不同的石板上 ...
- Rotate String
Given a string and an offset, rotate string by offset. (rotate from left to right) Example Given &qu ...
- JS实现多附件上传(asp.net)
前几天,用户提出一个需求-多附件上传,另外,每个上传文件要加一个别名,本人创新少,从网上收集了资料,稍微改写,满足了 客户的需求.在应用到程序之前,先做了个小测试,测试通过,小高兴,就记录下了这个小测 ...
- 73 [面试题]交换一个整数的二进制表示的奇偶位(swapOddEvenBits)
[本文链接] http://www.cnblogs.com/hellogiser/p/swap-odd-even-bits.html [分析] 假定一个数字是8位数,设为ABCDEFGH ABCDEF ...
- 一些LUA函数(转载)
转自http://hi.baidu.com/chevallet/item/9a3a6410c20d929198ce3363 一些LUA函数 1.assert (v [, message]) 功能:相当 ...
- 101 个 MySQL 的调节和优化的提示(根据实际情况调整,有些已经不适用)
英文原文:101 Tips to MySQL Tuning and Optimization ( July 12, 2011)翻译:http://www.oschina.net/translate/1 ...
- Linux系统排查1——内存篇
常见工作中,计算机系统的资源主要包括CPU,内存,硬盘以及网络,过度使用这些资源将使系统陷入困境.本系列一共四篇博文,结合我在实习期间的学习,介绍一些常见的Linux系统排障工具及方法. 第1篇——内 ...
- 【mysql】执行mysql脚本
来源:http://zhidao.baidu.com/link?url=p78PlTJZlheB4uSKCkmZApg-3qrTIBCS3yI5LbGJLEAnUuO3-4GE6dLqq1LWC_kn ...
- 搭建Maven工程的时候,做单元测试,报ClassNotFoundException
搭建Maven工程的时候报错 问题原因是在spring.xml中配置的 classpath:config.properties 没有在工程中创建.
- Txx考试(codevs 2894)
2894 Txx考试 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 黄金 Gold 题解 查看运行结果 题目描述 Description Txx是一个成绩很差的人,考 ...